Toate viețuitoarele de pe Terra au prevăzut în codul lor genetic, ca principală misiune, perpetuarea speciei. Referindu-ne la plante, indiferent cât de vitrege sunt condițiile lor de viață, ele își mobilizează toate energiile ca, în final, să producă măcar o sămânță. Sămânța este cea care poartă germenele unei vieți noi.
În cele ce urmează, vom lua ca model bobul de grâu care, de fapt, este un fruct de tip cariopsă și conține în interior sămânță.
Pentru a se putea păstra, sămânța ajunsă la maturitate trebuie să piardă apă până la 13-14% în cazul cerealelor și 7-8% în cazul oleaginoaselor.
Pentru a avea capacitatea maximă de germinare, semințele trebuie să parcurgă repausul seminal care, în cazul grâului, este de 40-68 de zile.
La unele semințe, de exemplu la soia, este indicat ca la semănat să se folosească sămânță obținută în anul precedent.
Principalele componente ale bobului de grâu sunt:
Învelișul (tegumentul), care reprezintă 12,5%;
Endospermul, care reprezintă 86,0%;
Embrionul, care reprezintă 1,5% din greutatea bobului.
Embrionul, care reprezintă planta în formă incipientă, în stare latentă, este format din: muguraș, radiculă, hipocotil și scutelum.
Pentru germinarea seminței, sunt necesari trei factori:
1. Apa pe care o absoarbe sămânța și o umflă. Cantitatea de apă necesară la germinarea seminței este diferită: sămânța de mei 25%, porumbul 44%, grâul 45%, iar soia 150% din greutatea seminței. Apa asigură mediul în care se desfășoară reacțiile biochimice și diviziunea celulelor embrionului.
2. Aerul (oxigenul) pătrunde în țesuturi, oxidează substanța organică și rezultă energia necesară procesului de germinare. Se asigură activitatea enzimelor care transformă substanțele cu molecule mari în substanțe cu moleculă mică, pentru hrănirea embrionului.
3. Căldura, care este specifică fiecărei specii de plante. Spre exemplu, grâul 1-2°C, sfecla de zahăr 4°C, floarea-soarelui 7°C, porumbul și soia 8-9°C, orezul 10-12°C.
Numai la această temperatură minimă se declanșează activitatea enzimatică. Din scutelum sunt secretate enzimele:
– Citaza, care dizolvă pereții celulelor endospermului;
– Amilaza, care transformă amidonul în maltoză și zaharoză;
– Maltaza, care transformă maltoza în glucoză și levuloză.
În endosperm acționează următoarele enzime:
– Maltaza, care transformă maltoza în glucoză și levuloză;
– Proteaza, care degradează proteinele în aciziaminici;
– Lipaza, care transformă substanțele grase în acizi grași și glicerină.
Din activitatea acestor enzime se formează un lichid lăptos, care trece din endosperm prin scutelum la embrion, unde o parte este oxidat și rezultă energia necesară germinației, iar altă parte servește la creșterea embrionului.
Etapele procesului de germinație sunt următoarele:
a) îmbibarea seminței cu apă care pătrunde prin hil și părțile subțiri ale pericarpului. La început, absorbția apei are loc prin îmbibația coloizilor din sămânță, ca proces fizic determinat de diferența de umiditate dintre sămânță și sol, iar ulterior, după hidroliza amidonului, rezultă substanțe simple osmotic active și absorbția apei are loc pe cale osmotică;
b) hidratarea și activarea enzimelor care intensifică respirația și rezultă energia necesară procesului de germinație;
c) diviziunea și creșterea celulelor embrionului;
d) încolțirea și ieșirea componentelor embrionului;
e) morfogeneza cu formarea organelor primare ale plantelor.
Radicula protejată de coleoriză sparge învelișul bobului și pătrunde în sol, după care apare mugurașul protejat de coleoptil, străbate stratul de sol de deasupra seminței și apar vârfurile ca acele deasupra solului.
Coleoptilul își îndeplinește misiunea, el are o anumită lungime de care se ține seama la adâncimea de încorporare a seminței.
Ajunsă la suprafața solului, frunza iese din coleoptil și, luând contact cu lumina solară, începe procesul de fotosinteză. Prin urmare, germinația durează atât cât embrionul se hrănește cu substanța de rezervă din bob și se încheie când începe fotosinteza. Pentru reușita procesului de germinație este necesar ca patul germinativ să fie corect pregătit, adică, la nivelul de încorporare a seminței, stratul de sol să fie așezat, cu densitatea aparentă (Da) 1,3 g/cm3 care asigură aportul capilar al apei la nivelul seminței, iar deasupra seminței solul să fie afânat cu Da 1,10-1,1 g/cm3 prin care să pătrundă aerul și căldura și să fie ușor străbătut de tinerele plante.
Asigurând aceste condiții, se realizează o răsărire explozivă, uniformă, cu asigurarea densității, cu plante viguroase care ocupă repede terenul și înăbușă eventualele buruieni.
Articol de: prof. dr. ing. VASILE POPESCU
Publicat în Revista Fermierului, ediția print – octombrie 2024Abonamente, AICI!
CITEȘTE ȘI: Râmele, plugul biologic al solului
Cum hifele ciupercilor asigură creșterea recoltelor
Buruienile sunt plante fără valoare economică atunci când sunt întâlnite în culturi și reduc producția. Buruienile consumă apa și nutrienții din sol în detrimentul plantelor cultivate. De asemenea, acestea reduc spațiul care revine plantelor cultivate, le umbresc, determină scăderea temperaturii la suprafața solului. Într-un lan în care sunt buruieni, plantele cresc mai firave, au rezistență mai mică la cădere, fructifică mai slab și devin sensibile la atacurile de boli și dăunători. Combaterea buruienilor este principala lucrare de îngrijire din cultura cerealelor păioase.
Din cercetările Corteva Agriscience, pierderile de producție în cazul culturii de grâu din cauza concurenței buruienilor sunt aproximativ de 10 – 20%, dar pot ajunge în situații extreme până la 60 – 70%. Este foarte important să scăpăm de concurența buruienilor problemă, precum: iarba vântului, toate speciile de veronica, turița, macul, samulastra de rapiță și rocoina (care încep să răsară în toamnă), prin aplicarea, încă din toamnă, de produse cu o activitate prelungită la sol.
Soluția, erbicidul Bizon™
Lider de piață pe segmentul erbicidelor la cultura de cereale păioase, compania Corteva Agriscience are soluții inovatoare pentru combaterea buruienilor atât monocotiledonate cât și dicotiledonate din cultura de cereale păioase atât în toamnă cât și în primăvară.
Vă recomandăm produsul Bizon™, erbicid cu un spectru foarte larg de combatere și efect de lungă durată împotriva buruienilor problemă din culturile de cereale păioase.
Bizon™, erbicid postemergent, selectiv pentru cereale păioase, se aplică în toamnă pentru combaterea buruienilor monocotiledonate (iarba vântului, eficacitate >95%) și a buruienilor dicotiledonate precum: samulastră de rapiță (eficacitate >95%), speciile de mușețel (eficacitate >95%), mac (eficacitate >95%), albăstrea (eficacitate >95%), viorele de ogor (eficacitate >95%), rocoină (eficacitate >95%), speciile de veronica (eficacitate >95%), traista ciobanului (eficacitate >95%), nu-mă-uita (eficacitate >95%), specii de sugel (eficacitate >95%), turiță (eficacitate >95%) si urzică mică (eficacitate >95%).
Datorită efectului combinat al celor trei substanțe active (diflufenican, penoxsulam și florasulam), Bizon™ are acțiune atât la nivelul solului, cât și la nivel foliar, având un efect foarte bun, chiar și în condiții mai puțin favorabile, fiind independent de precipitații.
Eficacitate și beneficii
Conform cercetărilor Corteva Agriscience, erbicidarea din toamnă cu Bizon™ oferă un spor de producție potențial de 10% comparativ cu erbicidarea de primăvară, iar din punct de vedere economic, erbicidarea în toamnă cu Bizon™ este de cele mai multe ori mai rentabilă versus o erbicidare în primăvară.
Erbicidul Bizon™ se aplică numai toamna, în postemergență, la culturile de grâu și orz de toamnă, triticale și secară, în doza de un litru pe ha, începând cu faza de o frunză până la 3 frați ai culturii tratate, cu excepția culturii de secară, unde se aplică până la stadiul de 3-4 frunze. Perioada optimă de aplicare pentru combaterea buruienilor cu frunză lată este până la faza de 4 frunze ale buruienilor.
Produsul Bizon™ se aplică atunci când temperatura aerului este cuprinsă între 5°C și 25°C, pe plantele neatacate de boli și dăunători, neafectate de îngheț, secetă și umiditate excesivă.
Eficacitatea erbicidului Bizon™ – 1 L/HA, 5 săptămâni de la aplicare
Beneficiile pe care le aduce erbicidul Bizon™ pot fi sintetizate astfel:
Flexibilitate în aplicare (BBCH 11-23: de la faza de o frunză - până la faza de 3 frați);
Efect de lungă durată, asigurând o protecție până la recoltare pentru buruienile țintă;
Selectivitate foarte bună la culturile omologate: grâu și orz de toamnă, triticale și secară;
Fără probleme în rotație: se pot semăna cereale și rapiță de toamnă;
Siguranță în caz de condiții dificile în primăvară;
Timp suficient pentru lucrările de primăvară.
Aplicarea în toamnă a produsului Bizon™ reduce competiția buruienilor cu plantele de cultură, pentru hrană și apă, încă din primele stadii de vegetație, asigurând un start mai bun al culturii de cereale și o trecere mai bună peste iarnă.
Bizon™, aplicat conform recomandărilor din etichetă, poate menține cultura curată de buruieni până la recoltare.
Articol de: ALEXANDRA PETCUCI, Category Marketing Manager Erbicide Corteva Agriscience RO & MD
Abonamente Revista Fermierului – ediția print, AICI!
Stațiunea de Cercetare – Dezvoltare Agricolă (SCDA) Lovrin este foarte aproape de a dobândi statutul de Institut de Cercetare în Biotehnologii Agricole. Există un proiect de lege care a primit aviz favorabil în Senatul României, dar care acum bate pasul pe loc în Camera Deputaților, forul decizional.
Demersul ca Stațiunea din județul Timiș, de la Lovrin, să-și schimbe actualul statut este sprijinit atât de politicieni din vestul țării, cât și de fermierii din această parte a României, conștienți de importanța unui astfel de institut. De altfel, proiectul de lege a fost elaborat de deputatul de Timiș Gheorghe Nacov, iar Senatul și-a dat acordul încă de anul trecut. Conducerea SCDA Lovrin spera ca legea să fie promulgată încă de la începutul primăverii. „Lucrurile nu mai depind de noi, de SCDA Lovrin și de Academia de Științe Agricole și Silvice din România. Totul depinde acum doar de decidenții noștri politici. Dacă doresc să avem un Institut de Cercetări Agricole în vestul României, vom avea, dacă nu, nu! Până la urmă, noi ne-am făcut datoria. Din punct de vedere tehnic, din punct de vedere științific, cred că putem fi considerați un institut, pentru că avem suficientă informație, suficientă experiență și rezultate cât să putem să ducem mai departe steagul acestei instituții ca institut și nu ca stațiune”, precizează conf. univ. dr. ing. Marinel Horablaga, directorul SCDA Lovrin.
În ciuda tergiversărilor, prof. univ. dr. ing. Valeriu Tabără, președintele ASAS, este optimist că demersul va avea finalul dorit. „Proiectul de lege este la Comisia de Învățământ, unde am avut primele întâlniri și unde mai avem de clarificat unele aspecte. Sunt și interese de a nu-i da drumul, chiar și din zona Timișului. La încurcat se pricep mulți… Când trebuie să construiești ceva, este mai greu, dar, indiferent de cine intervine, eu sunt convins că vom ajunge la o finalitate, pentru că institutul este o necessitate și pentru zona de vest, și pentru România, dar și pentru ce înseamnă relațiile în regiunea noastră europeană.”
În acest moment, în zona de vest a țării nu există niciun institut destinat cercetărilor agricole, așa cum există în Serbia la Novi Sad sau în Ungaria la Szeged, două institute puternice care au creat și impus pe piață soiuri performante, bine aclimatizate pentru această parte a Europei și apreciate chiar de fermierii din România. „Un institut are întâi de toate acces la alte resurse financiare și chiar la dotări tehnice, fără de care nu poți ajunge la performanță. Pe de altă parte, ca stațiune, Lovrinul se poate înscrie pe proiecte europene, împreună cu celelalte două institute din zonă, cel de la Novi Sad și cel de la Szeged. Statutul de stațiune pe care-l are Lovrinul nu permite intrarea pe aceleași programe. Ăsta este unul dintre țelurile pe care le urmărește un viitor institut. Eu îndrăznesc să spun că, în viitor, activitatea tuturor stațiunilor din vestul țării ar trebui să fie coordonată de acest institut, începând de la Caransebeș – ovine, Arad – bovine, Minișul pe viticultură și, de ce nu, până la Livada, în nord-vestul țării”, punctează Valeriu Tabără.
Directorul SCDA Lovrin vorbește la rândul său despre impactul negativ pe care îl are această întârziere în tot ce înseamnă accesarea de fonduri și programe de cercetare. „Una este să alergi într-o cursă cu o mașină de 1.300 cm3 și alta cu o mașină de 2.000 cm3. Atunci când ești institut, stai la masă cu institutele. Când ești stațiune, stai la masă cu stațiunile. Pierdem nu doar timp, pierdem oportunități de finanțare și pierdem vizibilitate, până la urmă, pentru știința românească. Trebuie să ne dorim să fim acolo, în prim-plan. Dacă nu se dorește acest lucru, trebuie să știm foarte clar asta”, explică conf. univ. dr. ing. Marinel Horablaga.
O problemă importantă cu care se confruntă cercetarea românească este dată de resursa umană. E greu să aduci în cercetare oameni valoroși pe bani puțini. Profesorul Valeriu Tabără spune că salarizarea este o problemă pentru întreaga economie românească, nu doar pentru cercetare. „Modul în care este construit sistemul de salarizare este o problemă în sine. Sistemul nu este unul stimulativ și nici unul care să-ți dea predictibilitate, să-ți poți planifica viața pe termen lung. Un tânăr care se află la început de carieră trebuie să aibă garanția pe cel puțin zece ani că se poate dezvolta și-și poate întreține familia. Din păcate, în România, salariul este calculat și plătește timpul cât stai la lucru, nu ce realizezi în acest timp. Asta este o mare problemă. Salarizarea trebuie să aibă și o componentă stimulativă, în așa fel încât în timpul petrecut la lucru să produci ceva, să produci plusvaloare. Cercetarea ar trebui să beneficieze de același sistem de salarizare cu învățământul. În același timp însă, separat, trebuie construită o pagină de buget care să recompenseze activitatea academică și rezultatele concrete. Sperăm ca în felul acesta să putem aduce spre cercetare toate vârfurile din învățământul superior. Am creat în societate zeci de programe pentru anumite categorii de tineri, dar niciodată nu ne-am gândit la tinerii de elită. Avem nevoie ca această elită să producă aici, în România. Dacă prin ei producem plusvaloare pentru alții, pe care apoi să o importăm, vom fi pedepsiți prin subdezvoltare”, arată președintele ASAS.
Rezultate care confirmă și susțin năzuințele cercetătorilor bănățeni
În anii `80, la SCDA Lovrin au fost create două soiuri de grâu care s-au bucurat de multă apreciere în piață: Alex și Ciprian, iar mai nou, cercetătorii de aici au lansat cu succes alte două soiuri de grâu care confirmă: Dacic și, mai ales, Biharia.
Tot la Stațiunea de la Lovrin au fost create patru soiuri valoroase de cânepă cu aplicații în industria farmaceutică, alimentară, dar importante și pentru producția de fibre.
Toate acestea sunt rezultate care confirmă și susțin năzuințele cercetătorilor bănățeni de a avea propriul institut.
Viitorul Institut de Cercetare în Biotehnologii Agricole de la Lovrin urmează să înglobeze și Stațiunea de Cercetare-Dezvoltare Agricolă de la Oradea, dar și Stațiunea de Pajiști de la Timișoara, care acum nu mai are personal, dar are patrimoniu. Rămâne să aflăm dacă, într-un an cu mare încărcătură electorală, politicienii vor găsi timp să dea undă verde pentru înființarea primului institut din vestul României, în câmpia Banatului, la Lovrin.
Articol publicat în Revista Fermierului, ediția print – august 2024Abonamente, AICI!
Cercetarea agricolă bănățeană este pe cale să câștige un nou pariu în domeniul ameliorării grâului. Lovrin 9Z este noul cod al performanței la Stațiunea de Cercetare - Dezvoltare Agricolă din pusta județului Timiș.
Lovrin 9Z este, de fapt, numele provizoriu pentru un nou soi de grâu cu parametri de campion. Echipa de cercetători de la Stațiunea de Cercetare – Dezvoltare Agricolă (SCDA) Lovrin, condusă de dr. ing. Gheorghe Bunta, își propune ca noul soi să aibă o toleranță mare la secetă și să depășească la parametri de calitate și de cantitate tot ceea ce s-a creat până acum la stațiunea timișeană. „Acest viitor nou soi de grâu caută să se plieze mai bine pe ceea ce a fost o excepție până în urmă cu câțiva ani, dar care astăzi vedem că a devenit realitate: ierni foarte blânde, toamnă prelungită până pe final de lună decembrie, desprimăvărare timpurie, în februarie încep deja lucrările de primăvară etc.”, precizează dr. ing. Gheorghe Bunta.
Noul soi de grâu al SCDA Lovrin își propune să valorifice aprovizionarea cu apă din sol ce se adună totuși în perioada de toamnă-iarnă, destul de precară, și să evite perioadele târzii de secetă din luna mai. „Anul acesta, am avut deja secetă încă din luna aprilie. Dacă ne uităm la cât de puțină apă s-a acumulat până acum, nu ne vine să credem, în condițiile în care, de regulă, în Banat și Crișana aveam suficientă apă pentru cultura grâului. În principiu, va fi un soi cu o talie mai înaltă, ceea ce presupune că în anumite condiții ar trebui să se aplice stabilizatori de creștere. Este recomandat în special atunci când se aplică o fertilizare abundentă, mai ales pe bază de azot. Contează foarte mult aparatul foliar, fotosinteza, bucătăria plantei. Noi zicem că și dacă nu se aplică regulatori de creștere, dacă nu survin furtuni mai ales după perioada de umplere a bobului, va rezista foarte bine la cădere”, explică dr. ing. Gheorghe Bunta.
Calitate, cantitate, stabilitate
Cercetătorii de la SCDA Lovrin se așteaptă ca noul soi de grâu, botezat provizoriu Lovrin 9Z, să aibă producții atât calitative, cât și cantitative, dar și stabile. „Progresul în domeniul calității grâului se obține mai greu, dar rămâne la același nivel, adică grâu panificabil. Cumularea de proteină variază foarte mult, de la 12% la 16%, în funcție de condițiile climatice, de fertilizare, de controlul bolilor și, bineînțeles, de factorul genetic. Are potențialul de a realiza producții mari și stabile, dar și de calitate corespunzătoare. Sper să depășim șase tone la hectar la nivel de întreaga Românie, dacă vorbim despre o medie de producție, obținută în condiții foarte variate de sol, de climă, de aprovizionare cu apă și elemente nutritive, ceea ce este foarte bine. Noul soi va depăși tot ce am obținut până acum în domeniul ameliorării grâului”, arată Gheorghe Bunta.
În 2024, noul soi de grâu este testat în peste 20 de stațiuni de cercetare din întreaga țară, urmând ca din toamnă să fie lansat în rețeaua Institutului de Stat pentru Testarea și Înregistrarea Soiurilor (ISTIS). „Anul acesta, obținem rezultate din rețeaua de stațiuni la nivel de țară și mizăm că vom obține producții foarte bune. Este o selecție, o preselecție înainte de a fi lansat în rețeaua de testare a ISTIS. Mai mult ca sigur că din toamnă îi dăm drumul la testare în această rețea, unde obligatoriu trebuie să fie testat în condiții diferite, timp de trei ani. În momentul în care lansăm un soi în producție, trebuie să oferim și o tehnologie specifică a acelui soi, ceea ce se referă la epoca de semănat, la densități, la fertilizare, la anumite tratamente sau sensibilități. De exemplu, virusul piticirii grâului este o problemă în ultimii ani. Acesta este vehiculat de cicade și de afide, care zboară atât toamna, cât și primăvara devreme, și atunci sigur că este important să avem un soi care să tolereze atacul acestor cicade, care să evite răspândirea masivă a virusului. Este un aspect pe care-l avem în vedere, în contextul schimbărilor climatice”, subliniază Gheorghe Bunta.
Așteptările de la noul soi sunt mari și la nivelul conducerii SCDA Lovrin. Conf. univ. dr. ing. Marinel Horablaga ne-a spus că pe linii de grâu va fi continuitate în următorii ani. „Va veni un nou soi cu calități mult mai bune decât ce avem în momentul de față. Urmează alte două linii, la care mai avem de lucru doi-trei ani, până când le vom lansa în rețeaua națională de testare. De altfel, misiunea noastră este să creăm soiuri și hibrizi noi, perfect aclimatizați la condițiile pedoclimatice din zona noastră, care să vină atât cu cantitate, cât și cu calitate, și, până la urmă, cu profit pentru fermieri, iar soiul Biharia este deja o certitudine în multe ferme din țară”, a punctat directorul SCDA Lovrin, Marinel Horablaga.
Biharia bate Glosa
În numai doi ani, cel mai recent soi de grâu creat la SCDA Lovrin, Biharia, a confirmat în piață, având vârfuri de producție de peste 9.000 kg/ha atinse la Combinatul Agroindustrial de la Curtici, județul Arad. „Am luat în cultură soiul Biharia și cu satisfacție spun, pentru că sunt din vestul țării, că soiul Biharia a bătut Glosa, soiul creat la Institutul de la Fundulea, care la un moment dat ajunsese la 65% din suprafața de grâu a României. Există potențial. De la soiul Biharia, eu am obținut 9.020 kg/ha cu indici de calitate foarte buni, am avut 16% proteină. L-am păstrat în cultură și anul acesta. Am avut discuții cu cei de la Fundulea, dar astea sunt rezultatele. Le-am avut puse brazdă-n brazdă și am aplicat aceeași tehnologie. Astea-s rezultatele, Biharia bate Glosa”, concluzionează fermierul Dimitrie Muscă, director general CAI Curtici.
Pentru a obține rezultatele dorite, în cercetare nu este suficientă priceperea. Răbdarea se dovedește a fi determinantă. Munca la crearea acestui nou soi de grâu a început încă din anul 2010 și, dacă în cei trei ani de testare în rețeaua ISTIS, Lovrin 9Z va da rezultatele scontate, urmează ca el să fie botezat, omologat și lansat în piață în 2028.
Articol publicat în Revista Fermierului, ediția print – iulie 2024Abonamente, AICI!
Hrănirea unei populații globale care va ajunge la aproape 10,3 miliarde până la mijlocul anilor 20801 și îmbunătățirea modului de trai reprezintă o oportunitate extraordinară pentru agricultură de a deschide calea.
Prin adoptarea unor practici inovatoare și durabile în agricultură, fermierii pot asigura producerea de alimente nutritive și sănătoase pentru toți oamenii, în timp ce creează un ecosistem care susține în mod natural oamenii, progresul și planeta.
În acest context, studii recente din ultimul an2,3 demonstrează faptul că protecția solului, una dintre cele mai valoroase resurse naturale, este fundamentală pentru asigurarea unei agriculturi durabile. Solul nu este doar un substrat inert, ci reprezintă un ecosistem viu, esențial pentru producția alimentară. Menținerea sănătății și integrității solului este, astfel, o condiție esențială pentru viitorul agriculturii.
Solul reprezintă un ecosistem complex care găzduiește milioane de microorganisme vitale pentru ciclul de nutrienți și pentru fertilitatea naturală a terenurilor. Protejarea acestei resurse presupune așadar adoptarea unor practici agricole sustenabile care să prevină degradarea și eroziunea, iar una dintre metodele cheie este menținerea structurii acestuia și protejarea microorganismelor care trăiesc în el. Aceste microorganisme sunt responsabile pentru descompunerea materiei organice, fixarea azotului și multe alte procese vitale care susțin sănătatea solului. De aceea, soluțiile utilizate în agricultură trebuie să fie atent selectate, astfel încât să nu compromită aceste procese esențiale, iar o opțiune pentru fermieri din toatlă lumea sunt erbicidele care trebuie alese nu doar pentru eficiența lor în combaterea buruienilor, ci și pentru impactul redus asupra solului și microorganismelor benefice.
Controlul eficient al buruienilor cu ajutorul soluțiilor care să nu afecteze structura solului
Buruienile reprezintă un obstacol major pentru fermieri, reducând drastic randamentul culturilor și afectând negativ calitatea acestora. Controlul eficient al buruienilor este, așadar, esențial pentru asigurarea productivității agricole, prin apelul la soluții care să nu afecteze structura solului. Astfel, erbicidele formulate pentru a fi eficiente împotriva buruienilor fără a afecta negativ solul sunt esențiale pentru asigurarea unei agriculturi sustenabile.
Un exemplu de erbicid complex la care fermierii din România pot apela este Bizon™, formulat special pentru a aborda provocările actuale de mediu, parte din portofoliul de produse pentru protecția plantelor al companiei internaționale de cercetare și dezvoltare în agricultură Corteva Agriscience.
Cu o combinație de trei substanțe active, Bizon™ oferă un control excelent al buruienilor din culturile de cereale păioase, necesită aplicarea unei cantități mai mici de produs o singură dată pe sezon și, asigurând în acest fel un impact minim asupra structurii solului și asupra microorganismelor benefice. Prin selectivitatea ridicată a produsului, acesta permite țintirea buruienilor problematice fără a afecta alte plante sau organisme din ecosistem, contribuind astfel la menținerea unui echilibru ecologic.
Dumitrache Burlacu, fermier și administrator Neltic Agro - județul Brăila: „Anul trecut am semănat la începutul lunii octombrie grâu, și după răsărit, am aplicat Bizon™ în toamnă în doză de un litru la hectar. Odată ce am dat cu erbicidul în toamnă, nu mai există riscul de a îmburuiena lanul de grâu la primăvară. Chiar din primul an al apariției sale, am utilizat Bizon™ pe o suprafață de 50 de hectare și îl recomand tuturor fermierilor în erbicidarea de toamnă, pentru că este mult mai eficientă. În viitor nu am în plan să renunț la utilizarea erbicidului, pentru că oferă într-adevăr rezultate foarte bune la cultura de toamnă”.
Sustenabilitatea în agricultură este o necesitate pentru viitorul alimentației globale, iar Corteva Agriscience le asigură fermierilor soluții de care au nevoie pentru a atinge aceste obiectiv fără a avea un impact negativ asupra mediului înconjurător.
1 World Population Prospects 2024: Summary of Results - World | ReliefWeb2 Importance of Soil Management in Sustainable Agriculture | SpringerLink3 Soil Management in Sustainable Agriculture: Principles and Techniques | SpringerLink
Articol de: JEAN IONESCU, Country Leader Corteva Agriscience România și Republica Moldova
Abonamente Revista Fermierului – ediția print, AICI!
Schimbările climatice aduc cu ele provocări semnificative pentru fermieri. În ultimii ani, România și Republica Moldova s-au confruntat cu o serie de fenomene extreme, precum secetă severă și variații mari de temperatură. Aceste condiții au afectat culturile de cereale păioase, făcând și mai dificilă gestionarea buruienilor care concurează pentru resursele limitate de apă și nutrienți.
Buruienile reprezintă o problemă majoră în culturile de cereale păioase, deoarece consumă resursele vitale ale solului, reducând astfel spațiul, lumina și nutrienții disponibili pentru plantele cultivate. Astfel, plantele de cultură nu se pot dezvolta corespunzător, au o rezistență mai mică la cădere, fructifică mai slab și sunt mai susceptibile la atacurile bolilor și dăunătorilor. Combaterea eficientă a buruienilor este, prin urmare, esențială pentru a asigura sănătatea și productivitatea culturilor.
Fermierii trebuie să adopte strategii eficiente pentru a combate buruienile în culturile de cereale păioase de toamnă, iar erbicidarea de toamnă devine o necesitate. O soluție pentru aceștia este aplicarea erbicidelor cu acțiune la sol, dar și foliar, care să împiedice riscul ca buruienile să devină o competiție pentru plantele de cultură în consumul resurselor necesare dezvoltării.
O alegere eficientă este erbicidul postemergent selectiv pentru cereale păioase, ideal pentru aplicarea în toamnă, Bizon™, parte din portofoliul de produse pentru protecția plantelor al companiei internaționale de cercetare și dezvoltare în agricultură Corteva Agriscience. Bizon™ are un spectru foarte larg de combatere și un efect de lungă durată împotriva buruienilor ce reprezintă o problemă pentru culturile de cereale păioase. Datorită combinației de substanțe active, erbicidul acționează atât la nivelul solului, cât și la nivel foliar, oferind rezultate excelente chiar și în condiții climatice nefavorabile, acționând independent de nivelul de precipitații.
Dumitrache Burlacu, fermier și administrator al societății Neltic Agro - județul Brăila: „Anul trecut am semănat la începutul lunii octombrie grâu, iar după răsărit am aplicat Bizon™ în toamnă, în doză de un litru la hectar. Odată ce am dat cu erbicidul în toamnă, nu mai există riscul de a îmburuiena lanul de grâu la primăvară. Chiar din primul an al apariției sale am utilizat Bizon™ pe o suprafață de 50 de hectare și îl recomand tuturor fermierilor în erbicidarea de toamnă, pentru că este mult mai eficientă. În viitor nu am în plan să renunț la utilizarea erbicidului, pentru că oferă într-adevăr rezultate foarte bune la cultura de toamnă.”
Aplicarea erbicidului Bizon™ în toamnă, la culturi precum grâul, orzul de toamnă, triticale și secară, reduce concurența buruienilor încă din primele stadii de vegetație. Acest lucru asigură culturilor un start optim și o dezvoltare robustă, contribuind la trecerea cu succes peste iarnă și la obținerea unor recolte mai sănătoase și mai productive.
Autor: MARIA CÎRJĂ, Marketing Manager Corteva Agriscience România & Rep. Moldova
Abonamente Revista Fermierului – ediția print, AICI!
Spre deosebire de industria auto, utilajele agricole sunt reproiectate doar atunci când există o inovație tehnică majoră care justifică schimbarea aspectului. Așa se întâmplă cu mașina de recoltat CR 11 de la New Holland, care, pe lângă că este cea mai mare realizată vreodată, stabilește și noi standarde în ceea ce privește productivitatea și reducerea pierderilor de cereale. În cadrul expoziției AgriPlanta-RomAgroTec 2024, compania AgroConcept, care reprezintă în țara noastră marca New Holland, a lansat combina CR11, înainte de a fi oficial lansată de către producător. Astfel, sute de fermieri din România au putut să o vadă și să afle toate detaliile tehnice.
Însă, combina cea mai mare din lume, noutate mondială, a fost văzută pentru prima dată de publicul larg la Agritechnica 2023, unde a fost premiată cu aur, fiind singura maşină de recoltat care a câştigat o medalie de aur la Hanovra (Germania), anul trecut. „Medaliile la expoziția Agritechnica sunt acordate în baza unor analize făcute de un juriu specializat, așa încât trebuie într-adevăr să vii cu ceva inedit pentru a câştiga aceste medalii. În decursul timpului, New Holland ne-a obişnuit cu dezvoltările, cu inovațiile, iar producţia acestei combine se bazează pe o experienţă de aproape 50 de ani în ceea ce priveşte tehnologia Twin Rotor, cu două rotoare longitudinale. În 1975, New Holland a introdus pentru prima dată în lume tehnologia Twin Rotor și de atunci au fost mai multe generaţii de combine. A fost combina TR, în 2002 a apărut combina CR care a fost dezvoltată în decursul acestui timp astfel încât să aibă productivităţi extrem de mari. Știm bine că în anul 2014 combina CR10.90 a câştigat recordul mondial pentru cea mai mare cantitate de grâu recoltată în 8 ore, 797 tone de grâu, şi de atunci niciun alt competitor nu a bătut acest record. Atunci, în 2014, New Holland a realizat că este responsabil să dezvolte în continuare combine mai performante şi în acea perioadă a început proiectarea acestui concept nou, CR11”, povestește Florin Marin, director tehnic AgroConcept.
Având experiență atât pe partea de tehnologie, cât şi pe partea de sisteme, New Holland a lansat pe piață o combină complet nouă, deoarece mașina de recoltat CR11 nu este o dezvoltare a platformei vechi, ci este o platformă complet nouă, 90% din componentele combinei CR11 sunt complet noi. „Au venit cu câteva soluţii inedite, în premieră în domeniul agri: motorul acestei combine este aşezat longitudinal, aşezat puţin lateral dreapta pentru a compensa greutatea tubului de descărcare în special atunci când tubul este deschis, lucrează cu hedere de capacităţi mari, până la 18 metri lăţime de lucru, drept urmare şi tubul de descărcare trebuie să fie capabil să transporte materialul într-o remorcă de transport utilizând aceste hedere mari. Sistemul de distribuţie a reziduurilor a fost complet regândit, împreună cu tocătorul, pentru a face faţă acestor lăţimi mari de lucru, pentru a împrăştia materialul tocat pe toată lăţimea de lucru a hederului şi pentru a-l împrăştia uniform, astfel încât în special pentru clienţii care utilizează tehnologia no-tillage sau minimum-tillage să poată oferi şanse egale fiecărei seminţe din cultura următoare. Acest sistem de împrăştiere a reziduurilor este echipat cu nişte senzori radar care au capacitatea să măsoare cantitatea de material împrăştiată indiferent de condiţiile de lucru, fie noaptea, fie în condiţii de praf excesiv, iar un sistem complet automat este capabil să regleze automat, astfel încât împrăştierea să se realizeze uniform pe toată lăţimea de lucru a combinei”, precizează Florin Marin.
775 cai putere și pierderi aproape de zero
Combina CR11, ai cărei cai putere trec de cifra 700, poate înlocui trei combine de o capacitate medie. Iar, important pentru fermieri, cu noua combină de la New Holland costurile se reduc pentru tona de cereale recoltate. „Combina aceasta este echipată cu un motor de 16 litri, 775 CP, are un buncăr de cereale de 20.000 litri, cu o capacitate de descărcare de 210 litri/secundă. Combina CR11 a venit pentru prima dată în România anul trecut, când noi am folosit-o deja la recoltatul porumbului. Asta este o dovadă a faptului că piaţa din România pentru New Holland este foarte importantă, ei ne-au pus pe harta celor mai importante ţări în ceea ce priveşte partea de testare, îşi doresc să dezvolte maşini care să se potrivească pentru condiţiile care sunt diferite de la o ţară la alta, iar anul trecut am avut un test în România. Acum, în campania de vară, începând cu luna iunie o combină va veni în țara noastră şi noi o vom folosi la câţiva dintre fermierii noştri, pentru a o arăta şi pentru a înţelege exact capacitatea reală a acestei combine. Începând cu anul 2025 va fi deschisă către vânzare”, arată directorul tehnic al companiei AgroConcept.
În România, sunt foarte mulţi fermieri care lucrează suprafeţe medii sau mari de teren și care utilizează în momentul de faţă mai multe combine. Însă, având în vedere problemele generate de lipsa forţei de muncă, fermierii îşi doresc să renunţe la două-trei combine mai vechi şi mai mici şi vor să achiziţioneze o combină mai mare, cu o productivitate crescută, astfel încât să reuşească să-şi recolteze culturile în cel mai scurt timp, în condiţii de calitate foarte bună şi cu un procent de pierderi cât mai mic. „În cazul combinei New Holland CR11, pierderile tind spre zero. Cu această nouă combină putem înlocui trei combine de o capacitate medie. Cu siguranţă vom avea un singur operator pe această combină şi practic ceilalţi doi care ne rămân îi putem folosi pentru alte lucrări, pentru că ştim bine, e important imediat după ce recoltăm cu combina să intrăm să pregătim terenul”, a afirmat Florin Marin.
Pe partea de tehnologie, combina New Holland CR11 este de ultimă generaţie, dar pe partea de operare este gândită în aşa fel încât să fie operată de marea majoritate a fermierilor. „Datorită sistemului IntelliSense, modelul CR11 poate fi utilizat chiar şi de operatori cu mai puţină experienţă, care pot folosi combina la capacitate maximă pentru că, prin intermediul sistemului de deblocare automată în cazul în care se înfundă, operatorii chiar şi mai puţin experimentaţi pot conduce combina cât mai aproape de limită sau chiar peste, fără grija că dacă se înfundă durează foarte mult să o desfunde. Prin acest sistem inteligent, maşina este capabilă să identifice în care zonă a apărut blocajul şi automat să deblocheze combina fără ca operatorul să fie nevoit să coboare din cabină, în doar câteva minute. În metoda tradiţională, operatorii erau speriaţi şi nu foloseau combina la capacitatea maximă pentru că aveau temerea că dacă o înfundă după aia pierd foarte mult timp pentru a o debloca. În momentul de faţă, New Holland s-a gândit la lucrul ăsta şi a reuşit să creeze acest sistem inteligent care îi face chiar şi pe operatorii mai puţin experimentaţi să se simtă confortabil şi să reuşească să atingă capacitatea maximă a combinei”, punctează Florin Marin.
Și pentru că este vremea strângerii recoltelor din câmp, ar mai trebui punctat că agricultura nu este doar despre a produce cereale, ci importantă este și partea economico-financiară, iar accentul trebuie pus pe costul total al lucrărilor agricole. „Costul total de exploatare, costul total de recoltare pentru fermieri este foarte important. La astfel de aspecte s-a gândit New Holland când a proiectat combina CR11. Au creat această combină eficientă, o combină care are o calitate foarte bună a grânelor, ceea ce înseamnă bani pentru fermier, cu un procent de pierderi aproape de zero, care în continuare înseamnă bani pentru fermier. Ideea este ca la final, când tragem linie, să ne coste cât mai puţin posibil pentru tona de cereale recoltate. Și, aici New Holland a făcut foarte bine treaba şi o să vedem în lucru combina CR11 în timpul verii, în fermele din România”, a încheiat Florin Marin, director tehnic AgroConcept.
Foto: AgroConcept/New Holland
Despre lansarea combinei CR11 New Holland la expoziția AgriPlanta-RomAgroTec 2024 puteți citi accesând link-ul: https://revistafermierului.ro/din-revista/stiri/item/6178-combina-cr11-noutatea-mondiala-adusa-de-agroconcept-la-agriplanta-romagrotec-2024.html
Abonamente Revista Fermierului – ediția print, AICI!
Aduc în atenția fermierilor fungul Fusarium graminearum care produce boala numită „albirea și înroșirea spicelor”. În zonele din țară unde au căzut precipitații în perioada înfloritului, iar temperaturile au fost favorabile realizării infecțiilor, este posibil să apară fuzarioza.
Schimbările climatice din ultimii ani au influențat pozitiv dezvoltarea fungilor din genul Fusarium, favorizând apariția epidemiilor la grâu. Cea mai recentă epidemie de Fusarium la cerealele din Câmpia Banatului (și nu numai) a fost în anul 2019, an în care calitatea a fost foarte scăzută, în principal din cauza prezenței micotoxinelor fusariene în cantități care au depășit limitele permise.
Pierderile produse de F. graminearum la grâu în anii epidemici pot fi uriașe. Pagubele se datorează în mare parte sterilității spicelor, MMB-ului scăzut (masa a o mie de boabe), dar mai ales prezenței micotoxinelor în cariopse.
Fusarium graminearum este un patogen deosebit de periculos al cerealelor deoarece produce micotoxine încadrate în două clase chimice: trichothecene și zearalenon. Dintre trichothecene amintim: vomitoxina (deoxynivalenol sau DON), micotoxina T – 2, diacetoxyscirpenol (DAS), monoacetoxyscirpenol (MAS) şi nivalenol. Aceste micotoxine sunt iritanţi puternici şi au fost asociate atunci când sunt consumate cu simptome ca: vomă, refuzul hranei şi posibil ulcer gastric. Cele mai semnificative trichothecene sunt toxina T – 2 şi deoxynivalenolul, care apar în cantităţi destul de mari la cereale. Zearalenonul face parte din a doua clasă chimică de toxine produse de F. graminearum. Când este consumat de animale este asociat cu probleme de reproducere, cum sunt: avorturile, căldurile false, reabsorbţia fetusului şi a mumiilor [Cotuna & Popescu, 2009].
Fusarium și Alternaria sp. (foto din anul 2023)
În Câmpia Banatului, în anul 2023 au existat lanuri infectate, însă incidența spicelor atacate a fost mai scăzută, la fel și intensitatea. De la epidemia de Fusarium graminearum din anul 2019, putem aprecia că acest patogen nu a mai creat probleme deosebite în Banat, deoarece nu s-au întrunit condițiile climatice (precipitații continue și temperaturi moderate). Vom vedea ce va aduce această primăvară.
Prin intermediul acestui articol venim în sprijinul dumneavoastră cu informații despre tabloul simptomatic al bolii, biologia, epidemiologia și „combaterea” patogenului Fusarium graminearum. Aceste informații vă vor ajuta în viitor să vă protejați din timp culturile.
Micotoxinele fusariene, pericol pentru sănătatea oamenilor și animalelor
În fuzarioza grâului pot fi implicate mai multe specii de Fusarium. Studii numeroase arată că fuzarioza spicelor de grâu poate fi produsă de Fusarium graminearum, Fusarium culmorum, Fusarium nivale, Fusarium poae, Fusarium sporotrichioides [Miller, 1994; Lidell, 2003; Wegulo, 2012; Zrcková et al., 2019]. Dintre speciile menționate, Fusarium graminearum este prezentă în regiunile temperate cu climat mai cald, comparativ cu Fusarium culmorum care preferă zonele mai reci [Wang & Miller, 1988; Snijders & Perkowski, 1990; Miller et al., 1991; Miller, 2002]. În Câmpia Banatului, specia predominantă care produce infecții la spic este F. graminearum [Cotuna et al., 2013; Cotuna et al., 2022].
Dintre speciile de Fusarium producătoare de DON, F. graminearum este considerată cea mai importantă [Paraschivu et al., 2014; Paul et al., 2005; Anon, 1993c]. Deoxynivalenolul (DON) aparține familiei chimice de sequiterpene, fiind derivat din trichodiene (precursorul biochimic al tuturor trichothecenelor). DON - ul este foarte stabil din punct de vedere chimic. Semințele infectate de Fusarium conțin întotdeauna și micotoxine fusariene. Dintre acestea, DON - ul a fost găsit frecvent în cantități mari [McMullen et al., 1997]. După Wegulo (2012), cu cât procentul de boabe fusariate este mai mare cu atât și cantitatea de DON va fi mai ridicată. De altfel, marea majoritate a cercetătorilor corelează prezența deoxynivalenolului în cariopse cu intensitatea atacului din câmp și procentul de boabe fusariate [Cowger & Arellano, 2013]. Dacă ajunge în hrana oamenilor, deoxynivalenolul poate produce intoxicații alimentare, care se manifestă prin greață, vărsături, diaree, dureri de cap, dureri abdominale, febră etc [Lidell, 2003; Sobrova et al., 2010].
Până în acest an, limita maximă de DON admisă de legislația europeană în cerealele neprocesate era de 1250 ppb (1,25 ppm) [Commission Regulation (EC) No 1881/2006].
În Regulamentul (UE) 2024/1022 al CE din 8 aprilie 2024, de modificare a Regulamentului (UE) 2023/915 cu privire la nivelurile maxime de deoxinivalenol în produsele alimentare, limita maximă de DON permisă la cerealele neprocesate a scăzut la 1000 ppb. Noile reglementări intră în vigoare începând cu data de iulie 2024 și nu se aplică retroactiv.
A doua micotoxină importantă produsă de Fusarium graminearum este „toxina T - 2”, care apare în cantități semnificative la cereale, alături de deoxynivalenol [Annon, 1993b]. Intoxicația se manifestă prin simptome de febră, vomă, convulsii, anemie, inflamații acute ale aparatului digestiv.
Alt metabolit toxic produs de fungul F. graminearum este zearalenona (ZON). Zearalenona apare la grâul fusariat alături de DON și T - 2. Această toxină afectează eficiența reproductivă, nu și pofta de mâncare. Sindromul estrogenic ce apare în urma ingerării de hrană contaminată se caracterizează prin: umflarea glandelor mamare, hipertrofia uterină, umflarea vulvei, infertilitate [Marasas, 1991]. Cei mai sensibili sunt porcii.
Limitele maxime admise de ZON și T - 2 în grâul neprocesat sunt de 100 ppb. Cele trei micotoxine, DON, ZON și T - 2 nu sunt considerate carcinogenice. Zearalenona nu se transmite prin lapte sau alte produse lactate.
Factorii de risc pentru apariția infecțiilor
Risc crescut de infecții cu Fusarium graminearum se înregistrează în anii când se întrunesc următorii factori:
Temperaturi optime pentru realizarea infecțiilor. După Anderson (1948), temperatura optimă pentru realizarea infecțiilor este de 250C, indiferent de cât timp durează umezeala. După De Wolf et al. (2003), contează durata în ore a temperaturilor cuprinse între 15 - 300C, înainte cu șapte zile de înflorit. În condiții de vreme caldă cu temperaturi cuprinse între 25 - 300C și umiditate continuă, simptomele de Fusarium la spic (albire) pot apărea în 2 - 4 zile de la realizarea infecției [Wegulo, 2012]. Astfel, o cultură aparent sănătoasă, brusc poate să prezinte simptome de boală;
Precipitațiile. Precipitațiile continue dinainte de înflorit și în timpul dezvoltării cariopselor favorizează acumularea de cantități mari de DON în cereale. Cantitățile de precipitații din lunile mai și iunie predispun cerealele la infecția cu Fusarium. Perioadele în care grâul poate fi infectat sunt la înflorit sau imediat după înflorit [Hernandez Nopsa et al., 2012; Wegulo, 2012]. De Wolf et al. (2003) arată importanța duratei în ore a precipitațiilor înainte cu șapte zile de înflorit;
Umiditatea relativă a aerului (UR%). Cu cât expunerea la umezeală este mai îndelungată, intensitatea atacului la spic crește. Chandelier et al. (2011), într-un studiu efectuat pe o perioadă de șapte ani, arată o corelație puternică între umiditatea relativă medie de peste 80% și cantitatea de DON acumulată în cariopse;
Tehnologiile practicate în prezent de către fermieri pot influența pozitiv infecțiile cu Fusarium, cât și acumularea de micotoxine. Sistemele de cultivare „minimum tillage” sau „no tillage” (utile pentru conservarea solului), densitățile mari practicate, lipsa rotației, au dus la creșterea sursei de inocul în resturile vegetale ce rămân la suprafața solului [Unger, 1994; Watkins, 1994; Matei et al., 2010];
Soiurile sensibile.
Recunoașterea simptomelor
Fusarium graminearum poate ataca plantele de cereale păioase pe tot parcursul perioadei de vegetație, dacă condițiile climatice preferate se întrunesc.
Tabloul simptomatic al bolii se prezintă după cum urmează:
Plăntuţele care provin din seminţe infectate se îngălbenesc şi în cele din urmă putrezesc;
În faza de înfrăţire, rădăcinile şi coletul sunt brunificate din cauza infecţiilor realizate de miceliul şi clamidosporii din sol. Plantele atacate continuă să vegeteze slab şi vor forma spice sterile;
Forma cea mai gravă de atac este după înspicare. Spicele, iniţial se albesc parţial (câteva spiculeţe) sau total, apoi se înroşesc şi se acoperă cu un înveliş micelian, alb – roz sau alb – rubiniu, uneori portocaliu - somon, pe care se observă sporodochiile ciupercii (forma imperfectă). Pe spicele înroşite (pe palee, ariste sau boabe) se observă puncte negre care sunt periteciile ciupercii (forma perfectă). Cariopsele infectate sau fuzariate rămân mici, zbârcite, cenuşii sau rozii iar germinaţia şi puterea de străbatere va fi slabă [Popescu, 2005].
Ciclul de viață
Fusarium graminearum este agentul etiologic dominant al fuzariozei spicului la cerealele păioase cultivate în România. Ciuperca rezistă în resturile de plante vegetale, în sol și în semințe. Vremea umedă prelungită în timpul perioadei de vegetație favorizează creșterea și sporularea ciupercii. Sporii ciupercii sunt purtați de vânt și de picăturile de apă pe spicele de grâu. Grâul este susceptibil a fi infectat în perioada înfloritului și când cariopsele încep să se formeze [Popescu, 2005].
Fusarium graminearum rezistă în sol sub formă de miceliu saprofit, clamidospori şi peritecii. O sursă importantă de transmitere este sămânţa infectată din care ies plăntuţe bolnave care mor (infecţie sistemică). Infecţiile primare pot fi realizate de micelii sau clamidosporii din sol dar şi de ascosporii şi conidiile care ajung pe părţile aeriene ale plantelor. După realizarea infecției, miceliul care se dezvoltă intracelular va intra în sporogeneză, formându-se astfel conidiile ce asigură infecţiile secundare (foarte păgubitoare mai ales în perioada înfloritului) – Popescu, 2005.
Dezvoltarea acestui patogen este favorizată de vremea umedă (umiditatea aerului peste 90%, prezenţa ploilor) şi de temperaturile moderate (peste 200C) şi apoi de factorii agrofitotehnici (monocultura, solurile acide, azotul în exces, semănatul des, sensibilitatea soiurilor).
Infecţia continuă şi în depozite. Contaminarea cu micotoxinele produse de F. graminearum este asociată cu amânarea excesivă a recoltatului şi cu depozitarea cerealelor umede. Acumularea de micotoxine este masivă la temperaturi de 21 – 290C şi la o umiditate a boabelor de peste 20%.
Managementul integrat al fuzariozei grâului
Putem combate sau nu fuzarioza la cereale? O întrebare la care este greu de răspuns. Măsurile din cadrul sistemului de combatere integrată pot ține sub control destul de puțin fuzarioza dar nu întotdeauna ne feresc de infecții. De ce? Pentru că orice măsuri am respecta, condițiile climatice sunt esențiale în realizarea infecțiilor.
Atac la cariopse. Stanga, cariopse fusariate, dreapta cariopsă aparent sănătoasă (foto din anul 2023)
Măsuri profilactice
Măsurile de profilaxie sunt foarte importante dar nu ne feresc de infecții dacă condițiile climatice sunt favorabile patogeniei. Totuși, respectarea lor ne poate ajuta, în sensul că vom avea o rezervă mai mică în sol de inocul. În acest sens, este bine ca fermierii să respecte următoarele măsuri:
Cultivarea de soiuri adaptate climei locale şi zonei unde vor fi cultivate.
Cultivarea unor soiuri care tolerează mai bine patogenul. Despre rezistență totală nu putem discuta. Rezistența soiurilor de grâu la infecția cu Fusarium este foarte importantă și intens studiată astăzi. Sunt descrise până acum cinci tipuri de rezistență: tipul I - rezistența la infecția inițială (reacții de apărare); tipul II - rezistența la răspândirea agentului patogen în țesutul infectat; tipul III - rezistența la infecție a semințelor; tipul IV - toleranța la infecție; tipul V - rezistența la micotoxine [Mesterhazy, 1995; Ma et al., 2009; Kosaka et al., 2015; Zhang et al., 2020]. După Bai & Shaner (2004), crearea unor soiuri cu rezistență la Fusarium poate fi o strategie foarte bună pentru controlul acestei boli. În SUA, preocupări de ameliorare a grâului pentru rezistența la Fusarium sp. există de prin anul 1929. Un studiu din 1963 arată că, după un ciclu de cercetari de nouă ani, toate plantele de grâu pot fi infectate în proporție mai mare sau mai mică [Schroeder & Christensen, 1963].
Controlul dăunătorilor în lanurile de cereale nu trebuie neglijat, deoarece se ştie că favorizează infecţiile cu Fusarium graminearum.
Densităţile mari trebuie evitate.
Fertilizarea cu azot şi alte substanţe nutritive să se facă în mod echilibrat.
Rotaţia culturilor trebuie respectată, deoarece s-a constatat că reduce riscul de contaminare cu micotoxine produse de ciuperca Fusarium graminearum.
Resturile vegetale să fie îngropate prin intermediul arăturii.
Recoltarea la timp, uscarea la 24 de ore de la recoltare şi supravegherea umidităţii boabelor la depozitare [Cotuna & Popescu, 2009].
Dacă aceste măsuri sunt respectate, sursa de inocul va fi diminuată, NU şi eliminată.
Măsuri chimice
În funcție de condițiile climatice, tratamentele chimice pot fi eficiente sau nu. Tratarea semințelor înainte de semănat este esențială în prevenirea primelor infecții.
În România sunt omologate următoarele substanțe pentru tratarea semințelor de cereale păioase: Triticonazol; Tebuconazol; Fludioxonil + teflutrin (insecticid); Fludioxonil + protioconazol + tebuconazol; Fludioxonil; Difenoconazol + fludioxonil; Difenoconazol + fludioxonil + tebuconazol; Difenoconazol; Fludioxonil + fluxapyroxad + triticonazol; Ipconazol; Fluxapyroxad; Fludioxonil + sedaxan; Difenoconazol + fludioxonil + sedaxan; Bixafen + tebuconazol [după Aplicația PESTICIDE 2.24.3.1, 2024].
Tratamentele din vegetație
La modul general, în literatura de specialitate se recomandă două tratamente în timpul sezonului de vegetație, după cum urmează: primul tratament la începutul înspicării; iar al doilea tratament la sfârșitul înfloritului.
Studiile efectuate pentru stabilirea momentelor optime de efectuare a tratamentelor (când au eficacitate maximă) recomandă următoarea strategie:
Tratament la BBCH 59 - când grâul nu este înflorit - eficiență ridicată.
Tratament la BBCH 63 - 65 - început înflorit, moment optim pentru bolile spicului în general.
Tratament la BBCH 69 - sfârșit înflorit - nu se recomandă (prea târziu pentru tratament) - se poate aplica doar în situații grave cu risc de infecții secundare când sunt ploi continue după înflorit.
Pentru tratamentele în vegetație sunt omologate următoarele substanțe: Azoxistrobin; Tebuconazol; Metconazol; Azoxistrobin + protioconazol; Protioconazol + tebuconazol; Azoxistrobin + tebuconazol; Kresoxim - metil + mefentrifluconazol; Benzovindiflupir + protioconazol; Benzovindiflupir; Protioconazol; Protioconazol + spiroxamină + tebuconazol; Ciprodinil; Fenpropidin; Difenoconazol + tebuconazol; Tebuconazol + trifloxistrobin; Protioconazol + spiroxamină + trifloxistrobin; Protioconazol + trifloxistrobin; Boscalid + protioconazol; Fluxapyroxad + piraclostrobin; Mefentrifluconazol + piraclostrobin; Bromuconazol + tebuconazol; Proquinazid + protioconazol [după Aplicația PESTICIDE 2.24.3.1, 2024].
Fungicidele omologate trebuie utilizate doar în dozele recomandate de producători. Nu măriți dozele. Mărirea dozelor duce la apariția fenomenului de rezistență, iar rezistența la pesticide este o problemă mare a agriculturii moderne.
Tratamentele trebuie efectuate doar în zilele în care nu bate vântul și temperaturile nu sunt ridicate. Dacă după efectuarea tratamentelor intervin ploi, va trebui să repetați. Este foarte important să fie respectați timpii de pauză până la recoltat. Fungicidele utilizate la cereale au timpi de pauză destul de mari, începând de la 35 până la 50 zile.
Măsuri biologice
Combaterea biologică este foarte rar utilizată în combaterea fuzariozei la grâu și nu numai. De interes sunt antibioticele produse de bacterii (Bacillus subtilis) și fungi (Penicillium, Trichoderma, Trichothecium): fitobacteriomicina, nifimicina, fitoflavina, lavendromicina, trichotecina [Popescu, 2005].
În prezent, există un produs biologic omologat în România pe bază de Pythium oligandrum (M1 x 106 oospores/g Pythium oligandrum) pentru tratarea fuzariozei în perioada de vegetație. Tratamentele cu agenți biologici trebuie efectuate preventiv, nu curativ.
De reținut, recoltele contaminate cu micotoxine fusariene nu pot fi destinate nici pentru panificaţie, nici pentru hrana animalelor, din cauza intoxicaţiilor grave pe care le produc.
Bibliografie
Andersen, A. L., 1948. The development of Gibberella zeae head blight of wheat. Phytopathology, 38, 599 – 611.Anon, 1993b. In IARC Monographs on the evaluation of carcinogenic risk to humans, vol. 56, International Agency for Research an Cancer, Lyon, France, pp. 467 - 488.Anon, 1993c. In IARC Monographs on the evaluation of carcinogenic risk to humans, vol. 56, International Agency for Research an Cancer, Lyon, France, pp. 397 - 444.Bai, G., Shaner, G., 2004. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 42: 135 - 161.Chandelier, A., Nimal, C., André, F., Planchon, V., Oger, R., 2011. Fusarium species and DON contamination associated with head blight in winter wheat over a 7-year period 92003–2009) in Belgium. Eur. J. Plant Pathol., 130, 403 – 414.Cotuna, O., Sărățeanu, V., Durău, C., Paraschivu, M., Rusalin, G., 2013. Resistance reaction of some winter wheat genotipes to the attack of Fusarium graminearum L. Schw. in the climatic conditions of Banat plain, Research Journal of Agricultural Science, 45 (1), p. 117 - 122.Cotuna O., Paraschivu M., Sărăţeanu V., Partal E., Durău C. C., 2022. Impact of Fusarium head blight epidemics on the mycotoxins’ accumulation in winter wheat grains, Emirates Journal of Food and Agriculture, 34 (11), 949 - 962.Cotuna O., Popescu G., 2009. Securitatea și calitatea produselor vegetale, siguranța vieții, Editura Mirton, Timișoara, 327 p..Cowger, C., Arellano, C., 2013. Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes. Phytopathology 103: 460 - 471.De Wolf, E. D., Madden, L. V., Lipps, P. E., 2003. Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology, 93, 428 – 435.Hernandez Nopsa, J., Baenziger, P. S., Eskridge, K. M., Peiris, K. H. S., Dowell, F. E., Harris, S. D., Wegulo, S. N., 2012. Differential accumulation of deoxynivalenol in two winter wheat cultivars varying in FHB phenotype response under field conditions. Can. J. Plant Pathol. 34, 380 – 389.Kosaka, A., Manickavelu, A., Kajihara, D., Nakagawa, H., Ban, T., 2015. Altered gene expression profiles of wheat genotypes against Fusarium head blight. Toxins 72: 604 - 620.Liddell, C. M., 2003. Systematics of Fusarium species and allies associated with Fusarium head blight. In Fusarium Head Blight of Wheat and Barley; Leonard, K. J., Bushnell, W. R., Eds.; American Phytopathological Society: St. Paul, MN, USA, 2003; pp. 35 – 43.Ma, H., Ge, H., Zhang, X., Lu, W., Yu, D., Chen, H., Chen, J., 2009. Resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese barley. J. Phytopathology, 157, 166 – 171.Marasas, W. F. O., 1991. In Mycotoxins and Animal Foods (J. E., Smith, and R. S., Henderson, editors), CRC Press, Inc., pp. 119 - 139.Matei, G., Păunescu, G., Imbrea, F., Roşculete E., Roşculete, C., 2010. Rotation and fertilization - factors in increasing wheat production and improving the agro productive features of the brown reddish soil from central area of Oltenia, Research Jurnal Of Agricultural Science, Vol. 42 (1). USAMVB Timișoara, pag. 182 - 189.Mesterhazy, A. I., 1995. Types and components of resistance to Fusarium head blight of wheat. Plant breeding 114 5: 377 - 386.McMullen, M., Jones, R., Gallenberg, D., 1997. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis. 81:1340 - 1348.Miller, J. D., Greenhalgh, R., Wang, Y., Lu, M., 1991. Trichothecene chemotypes of three Fusarium species. Mycologia, 83, 121 – 130.Miller, J. D., 1994. Epidemiology of Fusarium ear diseases of cereals. In Mycotoxins in Grain. Compounds Other than Aflatoxin; Miller, J. D., Trenholm, H. L., Eds.; Eagan Press: St. Paul, MN, USA, 1994; pp. 19 – 36.Miller, J. D., 2002. Aspects of the ecology of Fusarium toxins in cereals. In Mycotoxins and Food Safety; DeVries, J. W., Trucksess, M. W., Jackson, L. S, Eds.; Kluwer Academic/Plenum Publishers: New York, USA, pp. 19 – 28.Paraschivu, M., Cotuna O., Paraschivu M., 2014. Integrated disease management of Fusarium head blight, a sustainable option for wheat growers worldwide, Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series, vol. XLIV, p. 183 - 187.Paul, P. A., Lipps, P. E., Madden, L. V., 2005. Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain: a meta-analysis. Phytopathology 95:1225 - 1236.Popescu G., 2005. Tratat de patologia plantelor, vol. II Agricultură, Editura Eurobit, 341 p..Snijders, C. H. A., Perkowski, J., 1990. Effects of head blight caused by Fusarium culmorum on toxin content and weight of wheat kernels. Phytopathology, 80, 566 – 570.Sobrova, P., Adam, V., Vasatkova, A., Beklova, M., Zeman, L., Kizek, R., 2010. Deoxynivalenol and its toxicity. Interdisc. Toxicol., 3, 94 – 99.Schroeder, H. W., Christensen, J. J., 1963. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53 7, 1: 831 - 838.Unger, P. W., 1994. Residue production and uses–an introduction to managing agricultural residues. In Managing Agricultural Residues; Unger, P. W., Ed., Lewis Publishers: Boca Raton, F. L., USA, pp. 1 – 6.Zhang, W., Boyle K., Brûlé - Babel, A. L., Fedak, G., Gao, P., Robleh Djama, Z., Polley, B., Cuthbert R. D., Randhawa, H. S., Jiang, F., Eudes, F., Fobert, P. R., 2020. Genetic Characterization of Multiple Components Contributing to Fusarium Head Blight Resistance of FL62R1, a Canadian Bread Wheat Developed Using Systemic Breeding. Front. Plant Sci. 11:580833.Zrcková, M., Svobodová - Leišová, L., Bucur, D., Capouchova, I., Konvalina, P., Pazderu, K., Janovská D., 2019. Occurence of Fusarium spp. In hulls and grains of different wheat species, Romanian Agricultural Research, No. 36, 173 - 185.Watkins, J. E., Boosalis, M. G., 1994. Plant disease incidence as influenced by conservation tillage systems. In Managing Agricultural Residues; Unger, P. W., Ed. Lewis Publishers: Boca Raton, F. L., USA, 261 – 283.Wegulo, S. N., 2012. Factors influencing Deoxynivalenol accumulation in small grain cereals, Toxins, 4, 1157 - 1180.Wang, Y. Z. and Miller, J. D., 1988. Screening techniques and sources of resistance to fusarium head blight. In: A. R., Khlatt, (ed), Wheat production: constraints in tropical environments. CIMMYT, Mexico. 239 - 250.***. 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.***. 2013. Commission Recommendation 2013/165/EU of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products.***. 2024. REGULAMENTUL (UE) 2024/1022 AL COMISIEI din 8 aprilie 2024 de modificare a Regulamentului (UE) 2023/915 în ceea ce privește nivelurile maxime de deoxinivalenol în produse alimentare, Jurnalul Oficial al Uniunii Europene, 9.4.2024, ELI: http://data.europa.eu/eli/reg/2024/1022/oj.
Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor
Foto: Otilia Cotuna (realizate în anii trecuți)
Abonamente Revista Fermierului – ediția print, AICI!
Fungul Puccinia striiformis produce boala numită „rugina galbenă”. Pe fondul climatic actual (vreme umedă și răcoroasă) și a sursei de inocul ridicată din anul trecut, primele infecții produse de Puccinia striiformis sunt evidente în lanurile de grâu, mai ales la soiurile sensibile. Este posibil ca și în acest an să ne confruntăm cu epidemii de rugină galbenă în unele zone din țară? Vom vedea.
În anul 2023, primele infecții au apărut la grâu în ultima decadă a lunii aprilie. Se pare că istoria se repetă. În 2024, în ultima decadă a lunii aprilie observăm primele pustule de rugină galbenă. Asta înseamnă că infecția s-a realizat mai devreme, adică în decada a doua a lunii aprilie 2024. Dacă vremea răcoroasă și umedă se va menține, posibil ca acest patogen să producă pagube importante în producție, așa cum s-a întâmplat și în anul 2023.
De aceea, vă recomandăm să verificați lanurile de grâu și orz, iar acolo unde constatați că PED-ul este depășit interveniți cu tratamente. Pentru gestionarea corectă a patogenului vă punem la dispoziție informații despre biologia, epidemiologia și combaterea acestui patogen periculos.
Factorii de risc pentru apariția infecțiilor
Riscul de apariție a epidemiilor de rugină galbenă crește când se întrunesc următorii factori:
Climatul răcoros;
Precipitațile abundente din perioada de vegetație;
Soiurile sensibile;
Samulastra;
Iernile ușoare;
Microclimatul umed;
Vânturile care bat din nord - vest și sud - vest (pot aduce uredospori de la distanță mai mare) - Martinez - Espinoza, 2008; Popescu, 2005.
Puccinia striiformis, infecție la soiul Miranda (Mănăștur, jud. Arad, 29.04.2024)
În ultima decadă a lunii aprilie 2024, acești factori sunt întruniți, iar patogenul este prezent în unele culturi de cereale din vestul țării, dar și în alte zone din România.
Importanța economică a bolii
În condițiile climatice ale României, rugina galbenă nu apare în fiecare an, ci doar în anii în care în timpul primăverii se înregistrează temperaturi scăzute (10 - 150C) și cantități mai mari de precipitații. Amintesc anul 2018, când în vestul României rugina galbenă a produs pagube la grâu și triticale. În acel an, infecțiile au apărut după înspicat, iar pagubele nu au fost mari. Nu la fel putem spune despre anul 2023 (la cinci ani de la infecțiile din 2018) când rugina galbenă a produs infecții încă din luna aprilie. Condițiile climatice ale anului 2023 au permis ca rugina să evolueze tot sezonul de vegetație. Pagubele au fost foarte mari, deoarece rugina a ajuns la cariopse, care au rămas mici și șiștave.
Este interesant să ne confruntăm din nou cu rugina galbenă la un an de la epidemiile din anul 2023. Vom vedea dacă vremea umedă și răcoroasă va persista. Dacă temperaturile vor crește peste 200C, infecțiile vor fi stopate.
Pierderi importante apar atunci când infecțiile apar devreme, mai ales la soiurile sensibile. Când boala apare după înspicat, în funcție de condițiile climatice, pagubele pot fi mai mari sau mai mici. Patogenul afectează recoltele și cantitativ și calitativ. Pierderile oscilează între 10% - 70% și excepțional chiar 100% (mai ales la culturile de grâu ecologic și la soiurile sensibile) - Chen, 2005.
Pustule de Puccinia striiformis cu epiderma ruptă (29 aprilie 2024)
Recunoașterea simptomelor
În anii cu primăveri umede și răcoroase, plantele de grâu, dar și cele de orz, triticale, secară, pot fi infectate pe tot parcursul perioadei de vegetație.
Tabloul simptomatic al ruginii galbene este total diferit de cel al ruginii brune [Eugenia Eliade, 1985; Viorica Iacob et al., 1998; Popescu, 2005].
Puccinia striiformis atacă toate organele plantelor: tulpini, frunze, teci, spiculețe (peduncul, rahis), glume, cariopse, ariste.
Tabloul simptomatic al bolii:
Primele infecții apar în luna aprilie și se pot întinde până în luna iunie dacă vremea permite asta;
Inițial, pe frunzele infectate se observă semne de boală care constau în dungi clorotice, paralele. În aceste zone clorotice se vor forma pustule specifice de culoare galbenă - deschis și chiar portocalii uneori. Forma pustulelor este dreptunghiulară frecvent, însă se pot observa și pustule eliptice. Pe frunze, pustulele sunt dispuse sub formă de striuri sau dungi între nervuri, în șiruri paralele, cu o preferință pentru partea superioară. La atacuri masive, frunzele se usucă prematur;
În cazul atacului la spiculețe, cariopsele vor fi șiștave. După Alexandri et al. (1969), glumele sunt cel mai mult atacate, atât la exterior cât și la interior. De altfel, acestei rugini i se mai spune și „rugina glumelor”. Dispunerea pustulelor este la fel ca la frunze. La sfârșitul perioadei de vegetație se formează teleutopustulele de culoare neagră, de dimensiuni mici, acoperite de epidermă și cu aspect lucios;
La tinerele plăntuțe infectate, tabloul simptomatic este și el diferit. Pustulele formate nu sunt delimitate de nervurile frunzei și tind să iasă din această zonă, fiind localizate în toate direcțiile, acoperind uneori frunza în întregime [Chen et al., 2014];
La soiurile rezistente simptomele sunt diferite, comparativ cu soiurile sensibile. Uneori nici un simptom nu este vizibil, alteori apar mici pustule înconjurate de o cloroză și chiar necroză. În astfel de situații, producția de uredospori este foarte scăzută.
Condiții climatice favorabile infecțiilor
Rugina galbenă este o boală a climatului răcoros. Se poate spune că acest fung iese în evidență prin sensibilitatea la temperatură, lumină, umiditate și chiar la poluarea aerului. Intervalul termic preferat de ciupercă este cuprins între 2 - 150C [Zhang et al., 2008].
Uredosporii germinează cel mai bine la temperatura de 70C, considerată optimă. După Schroeder et Hassebrank (1964), uredosporii pot germina la o temperatură minimă de 00C, optimă cuprinsă între 7 - 120C și maximă de 20 - 260C. Din momentul realizării infecției și până la începutul sporulării, temperaturile preferate sunt cuprinse între 13 - 160C, mult mai scăzute comparativ cu alte rugini ale cerealelor. Temperaturile de peste 200C încetinesc dezvoltarea ruginii galbene, deși studiile efectuate în ultimii ani arată că există și tulpini care tolerează și temperaturi mai ridicate. Stubbs (1985) arată că, temperaturile din timpul nopții au un rol esențial în realizarea infecțiilor comparativ cu cele din timpul zilei. Autorul menționează că roua care se formează pe frunze și temperaturile mai scăzute favorizează apariția infecțiilor în timpul nopții. În general, apa liberă (roua și ploaia) și temperaturile scăzute favorizează infecțiile [Chen, 2005].
Umiditatea are un rol foarte important în patogenia acestei rugini, influențând aderarea sporilor la țesuturile plantei, germinarea, realizarea infecțiilor și supraviețuirea. Dacă în timpul dezvoltării fungului intervin temperaturi ridicate și perioade de uscăciune, germinarea uredosporilor este întreruptă [Vallavieille - Pope et al., 1995; Popescu, 2005].
Vântul are importanță deosebită în răspândirea uredosporilor la distanțe mari [Brown & Hovmøller, 2002; Popescu, 2005].
Ciclul de viață
Fungul supraviețuiește în timpul verii pe miriște, samulastra de grâu, alte poaceae spontane și din gazon. Samulastra de grâu este o punte de trecere a patogenului în noile culturi de grâu în timpul toamnei, mai ales dacă vremea este umedă și răcoroasă [Popescu, 2005]. În toamna 2023, pe tinerele plăntuțe de grâu s-au dezvoltat pustule de rugină galbenă. În timpul verii când temperaturile sunt mai ridicate, rugina galbenă nu este observată dar sursa de inocul există (uredospori). Uredosporii sunt spori care rezistă la secetă, la temperaturile ridicate dint timpul verii cât și la cele scăzute din anotimpul de iarnă [Murray et al., 2005; Popescu, 2005].
În condițiile climatice ale României, ciclul de viață al ruginii galbene este hemiform, adică se formează doar două stadii: uredosporii (de culoare galbenă) și teleutosporii (de culoare maro închis spre negru, bicelulari, considerați spori de supraviețuire peste anotimpul de iarnă). Uredosporii sunt cei care produc infecțiile la cereale în condiții de temperaturi scăzute și umiditate ridicată [Popescu, 2005]. După Chen et al. (2014), uredosporii sunt cei care produc infecții repetate în timpul sezonului de vegetație dacă condițiile climatice sunt favorabile. Când temperaturile cresc, infecțiile se opresc iar pe frunze se formează teleutopustulele cu aspect negricios dispuse în șiruri paralele. Viabilitatea teliosporilor este foarte scăzută (sub 1%) peste anotimpul de iarnă. De aceea în primăvară, infecțiile sunt produse de uredospori care rezistă mult mai bine în condiții de iarnă [Wang & Chen, 2015].
Managementul integrat al ruginii galbene
Managementul ruginii galbene are ca scop protejarea frunzei stindard, precum și a celei de-a doua frunze. Cele două frunze trebuie să rămână libere de patogen deoarece producția finală depinde de acest lucru.
Măsuri profilactice
Deoarece patogenul este greu de combătut cu fungicide (fenomen de rezistență), măsurile profilactice sunt foarte importante în strategiile de management. Acestea constau în respectarea următoarelor măsuri:
Distrugerea samulastrei;
Folosirea soiurilor rezistente (mai ales în agricultura ecologică). Pierderile în producție pot fi mai reduse (de la 20% până la 90%). În cazul ruginii galbene, 20% pierdere în producție este totuși mult [Chen, 2014];
Sămânța să fie din sursă sigură și certificată;
Distrugerea poaceelor spontane;
Fertilizare cu azot echilibrată [Popescu, 2005].
Măsuri chimice
Tratamentele chimice sunt cele mai utilizate în combaterea ruginii galbene. Tratamentele trebuie efectuate ținându-se cont de următoarele recomandări:
Monitorizarea culturilor pentru a descoperi din timp primele infecții. Tratamentele trebuie efectuate în urma controalelor fitosanitare periodice chiar de la începutul perioadei de vegetație;
Aplicarea unui tratament se recomandă când PED - ul este de 25% intensitate de atac și înainte ca boala să devină severă [Popescu, 2005; Chen, 2014];
La semănat sămânța utilizată să fie tratată cu fungicide. Pentru tratarea semințelor este omologată substanța triticonazol.
Pentru combaterea ruginii galbene în perioada de vegetație sunt omologate următoarele substanțe: Tebuconazol; Azoxistrobin; Bixafen + spiroxamină + trifloxistrobin; Benzovindiflupir + protioconazol; Bezovindiflupir; Protioconazol; Difenoconazol; Fluxapyroxad; Metconazol; Protioconazol + spiroxamină + trifloxistrobin; Protioconazol + trifloxistrobin; Piraclostrobin; Mefentrifluconazol + piraclostrobin; Mefentrifluconazol; Fluxapyroxad + mefentrifluconazol; Proquinazid + protioconazol [Aplicația PESTICIDE 2.24.3.1, 2024].
Măsuri biologice
În prezent mulți agenți biologici sunt testați pentru combaterea biologică a ruginii galbene. Dintre agenții biologici testați, amintesc aici:
Biopreparate pe bază de Bacillus subtilis (tulpina QST 713) sunt testate pentru controlul ruginii galbene. În urma studiilor s-a constatat că, B. subtillis ține sub control patogenul doar la intensități mici de atac. Când severitatea infecției a fost ridicată și controlul biologic a fost mai scăzut, sub 30%. Tratamentele efectuate imediat după inocularea plantelor cu P. striiformis au dat cele mai bune rezultate. Concluzia studiului a fost că, tratamentele cu biopreparate sunt mai eficiente dacă sunt aplicate preventiv și nu curativ. Pentru obținerea unor rezultate bune în combatere, sunt necesare mai multe tratamente biologice, unul singur nefiind suficient [Reiss et Jørgensen, 2016];
Pseudomonas aurantiaca;
Brevibacillus spp.;
Acinetobacter spp.;
Chitosan [Feodorova - Fedotona et al., 2019].
Agenții biologici amintiți nu au dat rezultatele scontate în combatere. Feodorova - Fedotona et al. (2019) arată că, după doi ani de testări, rezultatele obținute nu au fost mulțumitoare.
Bibliografie
Alexandri A., M. Olangiu, M. Petrescu, I. Pop, E. Rădulescu, C. Rafailă, V. Severin, 1969. Tratat de fitopatologie agricolă, vol II, Editura Academiei Republicii Socialiste România, 578 p..Brown, J. K. M., Hovmøller, M. S. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science (Washington, D.C.), 297: 537 – 541.Chen X. M., 2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat, Canadian Journal of Plant Pathology, 27:3, 314 - 337.Chen W., Weelings C., Chen X., Kang Z., Liu T., 2014. Wheat stripe (yelow) rust caused by Puccinia striiformis f. sp. tritici, Molecular Plant Pathology, 15 (5), 433 - 446.Eliade Eugenia, 1985. Fitopatologie, Editat la Tipografia Universității din București, 277 p..Feodorova - Fedotova L., Bankina B., Strazdina V., 2019. Possibilities for the biological control of yellow rust (Puccinia striiformis f. sp. tritici) in winter wheat in Latvia in 2017 – 2018, Agronomy Research 17(3), 716 – 724.Iacob Viorica, Ulea E., Puiu I., 1998. Fitopatologie agricolă, Ed. Ion Ionescu de la Brad, Iaşi.Martinez - Espinoza A., 2008. Disease Management in Wheat. 2008 - 2009 Wheat Production Guide.Murray G., Wellings C., Simpfender S., Cole C., 2005. Stripe Rust: Understanding the disease in wheat, NSW Department of Primary Industries, 12 p.Popescu Gheorghe, 2005. Tratat de patologia plantelor, vol. II, Editura Eurobit, Timișoara, 341 p.Reiss A., Jorgensen L. N., 2016. Biological control of yellow rust of wheat (Puccinia striiformis) with Serenade®ASO (Bacillus subtillis strain QST 713), Crop Protection, vol. 93, 1 - 8.Schröder J., Hassebrauk K., 1964. Undersuchungen uber die Keimung der Uredosporen des Gelbrostes (Puccinia striiformis West). Zentrab. Bakteriol. Parasitenk. Infektionskrank. Hyg. 118, 622 – 657.Stubbs, R. W. 1985. Stripe rust. In Cereal rusts. Vol. II. Disease, distribution, epidemiology, and control. Edited by A.P. Roelfs and W. R. Bushnell. Academic Press, New York. pp. 61 – 101.Vallavieille ‐ Pope C., Huber L., Leconte M., Goyeau H., 1995. Comparative effects of temperature and interrupted wet periods on germination, penetration, and infection of Puccinia recondita f. sp. tritici and P. striiformis on wheat seedling. Phytopathology, 85, 409 – 415.Zhang Y. H., Qu Z. P., Zheng W. M., Liu B., Wang X. J., Xue X. D., Xu L. S., Huang L. L., Han Q. M., Zhao J., Kang Z. S., 2008. Stage ‐ specific gene expression during urediniospore germination in Puccinia striiformis f. sp. tritici. BMC Genomic.Wang, M. N. and Chen, X. M. 2015. Barberry does not function as an alternate host for Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest due to teliospore degradation and barberry phenology. Plant Dis. 99:1500-150.
Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor
Foto: Otilia Cotuna
Abonamente Revista Fermierului – ediția print, AICI!
Ploșnițele cerealelor din genul Eurygaster au migrat de la locurile de iernare (păduri de stejar în general) în lanurile de grâu. Primii adulți au fost observați la data de 23 aprilie 2024. În cultura verificată am găsit și primele ponte de ploșniță, ceea ce înseamnă că, primii indivizi au fost prezenți în culturi cu aproximativ 20 de zile în urmă (3 aprilie 2024). Această perioadă este necesară pentru hrănirea adulților hibernanți, împerecherea și depunerea pontelor. Pentru a putea combate eficient acest dăunător important al cerealelor, vă punem la dispoziție date despre biologia, daunele produse și managementul integrat.
Ploșnițele cerealelor (E. integriceps, E. maura, E. austriaca) sunt nelipsite din culturile de cereale păioase din Banat, unde apar an de an cu densități diferite, în funcție de condițiile climatice.
Ploșnițele sunt recunoscute ca dăunători importanți ai culturilor de cereale, deoarece prin modul de hrănire produc daune severe care duc la reducerea producțiilor, cât și a calității acestora (degradează glutenul). În situația în care procentul de boabe de grâu atacate de ploșnite este cuprins între 2 - 3%, făina rezultată va avea calitatea mai scăzută. Cu cât procentul crește, cu atât făina nu va putea fi utilizată în panificație. În consecință, pierderile pot fi foarte mari (50 - 90% la grâu) dacă ploșnițele nu sunt combătute la momentul optim [Simsek, 1998]. Critchley (1998) arată că, de regulă, populații masive se înregistrează la 5 - 8 ani.
Biologia dăunătorului
Ploșnițele din genul Eurygaster iernează în stadiul de adult în pădurile de foioase (sub frunziș) și sunt univoltine (au o singură generație pe an). Ele sunt active în timpul primăverii și începutul verii. De la locul de migrare ajung în câmpurile de cereale cu ajutorul vântului, putând parcurge aproximativ 10 - 20 km și chiar mai mult [Critchley, 1998; Roșca et al., 2011]. Populațiile dăunătorului pot fi urmărite destul de ușor, mai ales dacă se execută sondaje toamna în pădurile de foioase, rezerva biologică a dăunătorului putând fi astfel cunoscută la locul de iernare. Primăvara, sondajele se reiau pentru a calcula mortalitatea peste anotimpul de iarnă.
Eurygaster ap. la data de 23 aprilie 2024
Pragul biologic al ploșnițelor este de 120C [Săvescu & Rafailă, 1978]. Când temperatura medie a aerului este de 120C, adulții migrează în culturile de cereale. La modul general, în funcție de zonă și condiții climatice, adulții părăsesc locurile de iernat când temperaturile sunt cuprinse între 10 - 140C, ajung în culturile de grâu unde încep să se hrănească și să se împerecheze [Davari & Parker 2018]. Migrarea masivă are loc când temperaturile medii zilnice sunt de 12°C, iar temperaturile maxime sunt cuprinse între 18 - 200C [Gözüaçik et al., 2016; Roșca et al., 2011]. În funcție de condițiile climatice, perioada de migrare către culturi poate fi mai lungă sau mai scurtă.
Eurygaster sp. depunere pontă la data de 27 aprilie 2024
Ploșnițele încep să depună ponta după aproximativ 20 de zile de la începutul migrării, însă maximul de depunere se înregistrează la sfârșitul lunii mai [Roșca et al., 2011]. Cercetările realizate în anul 1973 de către Ionescu & Mustățea arată că primele ouă au fost depuse la 25 de zile după migrare (începutul lunii mai la acea vreme). Culoarea ouălor este verde deschis la început, iar mai târziu, când se apropie momentul eclozării, în partea superioară apare un inel roșcat. Ouăle sunt așezate în șiruri paralele pe frunze. Durata incubației se poate întinde pe o perioadă de 7 - 25 de zile, în funcție de condițiile climatice. Larvele eclozate trec în mod obligatoriu prin cinci vârste (cinci stadii nimfale) până ajung la maturitate, perioadă ce poate dura între 36 și 49 de zile [Roșca et al., 2011; Davari & Parker, 2018]. După Critchley (1998), perioada de la ou la adult poate dura minim 35 - 37 de zile și maxim 50 - 60 zile (funcție de condițiile zonei). Adulții noi se vor retrage către locurile de iernare (păduri în general) începând cu luna august când intră în diapauza estivală până în luna octombrie. Din octombrie până în luna mai intră în perioada de hibernare [Roșca et al., 2011; Paulian & Popov, 1980].
Precipitațiile abundente, vremea umedă și răcoroasă, vânturile puternice stânjenesc activitatea ploșnițelor [Critchley, 1998].
Atac la frunze
Recunoașterea daunelor
Ploșnițele încep să se hrănească de la sfârșitul lunii aprilie și până la recoltare. În zonele mai calde, adulții hibernanți pot fi observați în culturile de grâu la începutul lunii aprilie iar primele ponte pot fi înregistrate la mijlocul lunii aprilie (cum s-a întâmplat în acest an în Câmpia Banatului). Organele atacate sunt: tulpina, frunzele, spicul și cariopsele. Adulții hibernanți se hrănesc pe organele vegetative. La locul înțepăturii, apare o mică umflătură (con salivar) înconjurată de o zonă decolorată, gălbuie. Frunzele atacate, se îngălbenesc, se răsucesc și se usucă de la locul unde ploșnița a înțepat, atârnând ca un fir de ață mai gros.
Atac la spic
Din cauza atacului, uneori spicele rămân în burduf. Dacă ies din burduf, pot avea aristele ondulate (la soiurile aristate) sau poate apărea fenomen de sterilitate parțială sau totală și chiar albirea vârfului în situațiile grave. Atacul produs de adulții hibernanți produce de regulă pierderi cantitative, nesemnificative. Periculos este atacul larvelor la spic care duce la pierderi calitative foarte periculoase, cum ar fi degradarea glutenului sub acțiunea enzimelor secretate de ploșnițe [Rajabi, 2000]. Pierderea elasticității glutenului duce la deprecierea calităților de panificație.
Cariopsele atacate se recunosc ușor datorită înțepăturilor cu aspect de punct negricios înconjurat de o zonă de decolorare. Uneori punctul negricios nu este evident. Alteori, cariopsele atacate sunt zbârcite. Este bine ca procentul de boabe înțepate să nu treacă de 2%. Dacă trece de acest procent, calitatea pentru panificație a grâului începe să scadă [Rajabi, 2000]. După Roșca et al. (2011), la 15 - 20% boabe atacate, grâul nu mai poate merge către panificație.
Cariopse de grâu atacate de ploșniță
Managementul integrat al ploșnițelor cerealelor
Combaterea se face pe baza biologiei dăunătorului și a condițiilor climatice. În acest sens, ploșnițele trebuie monitorizate la locurile de iernat (păduri de stejar) prin efectuarea sondajelor pentru stabilirea rezervei biologice la intrarea în iarnă, cât și la ieșire. În cazul acestui dăunător, nu pot fi utilizate metode de prevenire, ci doar modele de predicție și monitorizare. În timpul recoltatului, o parte din noii adulți pot fi omorâți.
Metode chimice
În cazul ploșnițelor, criteriile importante în stabilirea momentului optim sunt cele biologice și ecologice [Herms, 2004]. Acestea pot fi diferite de la o zonă la alta.
Tratamentele împotriva generației hibernante, dar și pentru noua generație trebuie să se facă doar în urma controlului fitosanitar în culturi. Rolul controlului fitosanitar este de a stabili cât mai corect densitatea dăunătorului. Este bine ca tratamentele să se facă la avertizare și doar în culturile unde s-a depășit pragul economic de dăunare (PED).
Pragurile economice sunt stabilite, se cunosc și sunt diferite funcție de densitatea culturii și mai ales destinația producției:
PED-ul pentru adulții hibernanți este de 7 adulți/m2 în culturile cu densitate optimă, fertilizate corect;
Pentru culturile cu densități necorespunzătoare și nefertilizate, PED-ul este de 5 adulți/m2;
În cazul larvelor noii generații, contează densitatea larvelor de vârsta I și II;
PED-ul la culturile destinate consumului este de 5 larve/m2 și 3 adulți/m2.
Pentru loturile seminciere, PED-ul nu trebuie să depășească 1 larvă/m2 [Roșca et al., 2011].
În România sunt omologate pentru combaterea ploșnițelor următoarele substanțe: Deltametrin; Gama – cihalotrin; Lambda – cihalotrin; Tau – fluvalinat; Acetamiprid (se aplică la apariția dăunătorilor. Nu se aplică în timpul înfloritului); Esfenvalerat.
Pentru o bună eficiență în combatere, tratamentele trebuie aplicate la momentul optim. Cele mai sensibile la tratamente sunt stadiile de ou și primele vârste larvare (nimfe) - Gozuacik et al., 2016. Adulții sunt mai rezistenți la unele insecticide (acetamiprid de exemplu) - Kocak și Babaroglu, 2006. După aceeași autori, lambda - cihalotrinul s-a dovedit foarte bun în combaterea adulților hibernanți, mai ales atunci când tratamentul s-a efectuat primăvara devreme.
Atac la spice
Aplicarea excesivă a insecticidelor ucide paraziții naturali ai ploșnițelor (ex. Trissolcus grandis). După Saber et al. (2005), deltametrinul scade rata de apariție a parazitismului natural cu 18% până la 34%. Se crede că, populațiile de ploșnițe au crescut din cauza tratamentelor excesive care au omorât entomofauna utilă.
Metode biologice
Viespile din genul Trissolcus (paraziți de ouă) pot fi utilizate în controlul biologic al ploșnițelor - Kutuk et al., 2010.
Biopreparatele pe bază de fungi entomopatogeni pot înlocui tratamentele chimice dacă sunt aplicate la momentul optim. Fungii entomopatogeni utilizați în prezent sunt Beauveria bassiana și Metarhizium anisopliae [Trissi et al., 2012; Kouvelis et al., 2008]. Combaterea biologică nu este utilizată pe scară largă. Adesea, eficacitatea tratamentelor bio este oscilantă, necesitând cunoștințe deosebite din partea celui care folosește agenții biologici pentru ca rezultatele să fie cele scontate.
Bibliografie
Critchley, B. R., 1998. Literature review of sunn pest Eurygaster integriceps Put. (Hemiptera, Scutelleidae). Crop Protection, 17, 271 - 287.Davari, A., and B. L. Parker. 2018. A review of research on Sunn Pest {Eurygaster integriceps Puton (Hemiptera: Scutelleridae) management published 2004 – 2016. Journal of Asia - Pacific Entomology 21:352 – 360.Gözüaçik, C., A. Yiğit, and Z. Şimşek. 2016. Predicting the development of critical biological stages of Sunn Pest, Eurygaster integriceps put. (Hemiptera: Scutelleridae), by using sum of degree-days for timing its chemical control in wheat. Turkish Journal of Agriculture and Forestry 40:577 – 582.Ionescu C., Mustatea D., 1973. Contributions to the knowledge of some aspects of the biology and ecology of cereal bugs for forecasting the optimum control period in Romania. Analele Institutului de Cercetari pentru Protectia Plantelor 11: 119 - 131.Kutuk, H., Canhilal, R., Islamoglu, M., Kanat, A. D., Bouhssini, M., 2010. Predicting the number of nymphal instars plus new generation adults of the Sunn Pest from overwintered adult densities and parasitism rates. J. Pest. Sci. 83, 21 – 25.Kouvelis, V. N., Ghikas1, D.V., Edgington, S., Typas, M. A., Moore, D., 2008. Molecular characterization of isolates of Beauveria bassiana obtained from overwintering and summer populations of Sunn Pest (Eurygaster integriceps). Lett. Appl. Microbiol. 46, 414 – 420.Kocak E., N. Babaroglu, 2006. Evaluating Insecticides for the Control of Overwintered Adults of Eurygaster integriceps under Field Conditions in Turkey, Phytoparasitica 34 (5):510 - 515.Paulian F., Popov C., 1980. Sunn pest or cereal bug. In: Hafliger E., editor. Wheat Technical Monograph. Basel, Switzerland: Ciba - Geigy Ltd., pp. 69 - 74.Rajabi G. H., 2000. Ecology of cereal’s Sunn pests in Iran. Tehran, Iran: Agricultural Research, Education and Extension Organisation (in Persian).Roşca I., Oltean I., Mitrea I., Tãlmaciu M., Petanec D. I., Bunescu H. Ş., Rada I., Tãlmaciu N., Stan C., Micu L. M., 2011.Tratat de Entomologie generală şi specială, Editura “Alpha MDN”, Buzău, p. 279 - 296.Saber, M., Hejazi, M.J., Kamali, K., Moharramipour, S., 2005. Lethal and sublethal effects of fenitrothion and deltamethrin residues on the egg parasitoid Trissolcus grandis (Hymenoptera: Scelionidae). Econ. Entomol. 98 (1), 35–40.Săvescu A., Rafailă C., 1978. Prognoza în protecția plantelor, Editura Ceres, București, 354 p.Simsek, Z., 1998. Past and current status of sunn pest (Eurygaster spp.) control in Turkey. Integrated Sunn Pest Control, II. Workshop Report (eds. K. Melan & C. Lomer), pp. 49 - 60. Ankara Plant Protection Central Research Institute, Ankara, Turkey.Trissi, A. N., El Bouhssini, M., Al-Salti, M. N., Abdulhai, M., Skinner, M., 2012. Virulence of Beauveria bassiana against Sunn Pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) at different time periods of application. J. Entomol. Nematol. 4 (5), 49 – 53.
Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor
Foto: Otilia Cotuna
Abonamente Revista Fermierului – ediția print, AICI!