În ultima zi a lunii mai a.c., la Bruxelles, a avut loc cea de-a 68-a Întâlnire Publică Anuală a Federației Europene a Producătorilor de Furaje (FEFAC). În cadrul discuției „Perspectivele de creștere și instrumentele pentru fermieri pentru culturile proteice din UE”, Andre Negreiros, liderul Corteva Agriscience în Europa Centrală și de Est, a declarat: „Părțile interesate din industria agricolă trebuie să-și unească eforturile pentru a îmbunătăți performanța și a realiza un plan de proteine UE mai sustenabil, oferind fermierilor europeni noi modalități de a adapta oferta la cererea în schimbare”.
Experți din industrie din partea Comisiei Europene și parteneri din lanțul valoric au generat o dezbatere bogată și discuții despre direcția viitoare a industriei de creștere a animalelor și de furaje din UE, în drumul spre facilitarea tranziției verzi a sectorului zootehnic din Uniunea Europeană, într-un mod sustenabil și profitabil. Toți cei prezenți au fost de acord cu argumentul conform căruia cultivarea culturilor proteice este crucială pentru sustenabilitate, deoarece reduce semnificativ amprenta de carbon asociată cu transportul și diminuează dependența de importurile de peste mări. „Promovând agricultura locală, ne îmbunătățim autonomia strategică și susținem economiile rurale. Această abordare locală se aliniază cu angajamentul UE pentru o economie circulară sustenabilă și ajută la atingerea obiectivelor climatice prin minimizarea emisiilor de gaze cu efect de seră pe tot parcursul lanțului de aprovizionare”, a spus Andre Negreiros, subliniind necesitatea ca sectorul european al proteinelor vegetale să fie competitiv, de înaltă calitate și rezistent la numeroasele provocări economice, de mediu, climatice și tehnologice.
Reprezentantul Corteva Agriscience a adăugat: „Avem nevoie de politici consistente europene și ale statelor membre, reunite într-un set de măsuri menite să stimuleze și să încurajeze producția domestică de proteine, în timp ce se mărește diversitatea în utilizarea culturilor și se reduce amprenta de carbon”. Andre Negreiros a menționat necesitatea de a furniza un cadru consistent al UE care să permită competitivitatea lanțurilor valorice de proteine europene, inclusiv instrumente adecvate și obiective ambițioase, precum și stimulente semnificative și pe termen lung pentru părțile interesate.
De asemenea, este esențial să se dezvolte un bilanț pentru a urmări producțiile și consumurile de proteine vegetale alimentare și un cadru prietenos cu inovația pentru cercetare și dezvoltare competitivă, permițând utilizarea celor mai avansate metode de reproducere, inclusiv Noile Tehnici Genomice (NGT). În plus, părțile interesate trebuie să se unească pentru a sprijini comunicarea educațională către consumatori despre practicile de producție agricolă sustenabilă ale UE și beneficiile unei diete diversificate și echilibrate care include alimente pe bază de proteine vegetale.
Corteva Agriscience are un portofoliu de produse îmbogățit, proiectat strategic pentru a întări securitatea alimentară și a susține tranziția către combustibili regenerabili. Compania investește aproape patru milioane de dolari în fiecare zi în cercetare și dezvoltare, sporind accesul fermierilor la instrumente și tehnologii bazate pe știință la nivel global.
Abonamente Revista Fermierului – ediția print, AICI!
Joi, 30 mai 2024, caravana conferințelor FAPPR ajunge la Comana, în județul Constanța, în ferma lui Theodor Ichim, președintele Forumului Agricultorilor și Procesatorilor Profesioniști din România.
Forumul APPR transmite că vor avea loc o serie de discuții despre cum trebuie să utilizeze fermierii practicile sustenabile ca veritabile instrumente de optimizare a profitului în fermă. Totodată, se va vizita silozul Unigrains Trading și se va face turul fermei gazdă.
Conferința tehnică a FAPPR are ca temă „Practicile sustenabile – instrumente moderne pentru profitabilitatea fermei”, iar în cadrul evenimentului de la Comana – Constanța, Daniel Omet – director regional de vânzări la compania KWS - va vorbi despre alegerea hibrizilor potriviți pentru practicile sustenabile și cum poate fi folosită digitalizarea în tranziția către agricultura durabilă.
De asemenea, în contextul schimbărilor climatice cu care se confruntă agricultura în toată lumea, reprezentantul producătorului german de mașini agricole Horsch, Philipp Horsch aduce în discuție adaptarea producătorilor de tehnică agricolă, dar și a fermierilor, în anul 2024.
Abonamente Revista Fermierului – ediția print, AICI!
Plutella xylostella este prezentă în culturile de rapiță, cu densități diferite, funcție de zonă și condițiile climatice.
Primii adulți i-am observat în Timiș la data de 31 martie 2024 în unele culturi (nu peste tot). După această dată am amplasat capcane pentru monitorizarea dăunătorului. Diferențele de temperaturi înregistrate între noapte și zi au influențat negativ zborul în Câmpia Banatului. La această dată, în Banat putem observa în culturile netratate adulți, coconi, larve, ouă. Densitățile sunt scăzute și nu ar trebui să ne îngrijoreze.
În alte zone din țară (unde este mult mai cald) dăunătorul poate crea probleme dacă nu se intervine la timp. Pentru a putea combate eficient acest dăunător important al rapiței, vă punem la dispoziție date despre biologia, daunele produse, monitorizarea și managementul integrat.
Importanța economică
Molia Plutella xylostella este considerată specie invazivă, greu de combătut din cauza rezistenței la insecticidele actuale, cât și la biopreparatele pe bază de Bacillus thuringiensis [Tabashnik et al., 1990; Gong et al., 2014]. În multe zone din lume, această molie face parte dintre dăunătorii principali ai legumelor crucifere (varză, conopidă, broccoli), cât și ai rapiței și muștarului [Talekar & Shelton, 1993; Sarfraz et al., 2006; Furlong et al., 2013].
În țara noastră, Plutella xylostella este răspândită în zonele unde se cultivă varză, conopidă, rapiță. Creșterea suprafețelor cultivate cu rapiță în România a condus și la creșterea populațiilor de Plutella xylostella. Pe lângă asta, schimbările climatice actuale și-au pus amprenta asupra biologiei moliei. În literatura de specialitate se arată că primii fluturi apar primăvara în luna mai [Roșca et al., 2011]. Monitorizarea din acest an de la Stațiunea Didactică a Universității de Științele Vieții din Timișoara arată că primii fluturi au fost observați la sfârșitul lunii martie 2024.
Larvă și daună la rapiță
Impactul economic al acestui dăunător este greu de evaluat, deoarece în unele zone din lume produce pagube importante, iar în altele nu. Eventual pot fi calculate cheltuielile cu pesticide. La nivel mondial se constată că, combaterea dăunătorului este din ce în ce mai costisitoare [Zalucki et al., 2012].
Daunele produse pot ajunge chiar și la 50% din producție în anii cu infestări masive. Fermierii observă dăunătorul târziu, iar pagubele sunt inevitabile. Monitorizarea este indispensabilă și poate ajuta în stabilirea momentului optim de combatere.
Recunoașterea simptomelor
Imediat după eclozare larvele încep să se hrănească continuu, fiind recunoscute pentru lăcomia lor. În funcție de vârstă, ele se hrănesc diferit și produc simptome diferite, după cum urmează:
În primul stadiu, au un mod de hrănire minier, consumând parenchimul frunzelor;
După două - trei zile încep să se hrănească pe partea inferioară a frunzelor, rozând epiderma inferioară și parenchimul, cu excepția epidermei superioare (aspect de ferestruire);
În următoarele trei stadii, larvele devin foarte lacome consumând frunzișul non - stop, lăsând găuri ovale de diferite dimensiuni în frunze, iar aspectul de ferestruire dispare [Talekar & Shelton, 1993; Castelo Branco et al., 1997; Roșca et al., 2011]. La infestări severe din frunze rămân doar nervurile;
În urma hrănirii pe tulpini și silicve apare un simptom de albire în zona respectivă;
Hrănirea cu muguri florali, flori și silicve tinere este poate cea mai păgubitoare. Semințele din silicvele atacate nu se vor mai umple și se pot deschide prematur. În cazul în care larvele consumă semințele în formare, producțiile vor fi scăzute [Canola Council of Canada, 2021].
Daune la frunze
Biologia dăunătorului
În România, Plutella xylostella prezintă trei generații pe an. În alte zone din lume, mai călduroase, poate ajunge la șase generații pe an și chiar mai mult. Dăunătorul iernează în stadiul de pupă în cocon pe frunzele atacate. În anul următor, primii adulți vor apărea spre sfârșitul lunii mai. Condițiile climatice au schimbat dinamica acestei specii, în unele zone din România apărând în acest an încă de la sfârșitul lunii martie (în Banat, de exemplu).
Cele trei generații se dezvoltă în următoarele perioade:
În lunile mai - iulie se dezvoltă prima generație;
În iulie - august, a doua generație;
Generația a treia, din august până anul următor [Roșca et al., 2011].
Ciclul de viață are patru etape sau stadii: adult, ou, larvă, pupă. Durata fiecărui stadiu este condiționată de condițiile climatice (temperatura mai ales). Adulții sunt mici (cam 9 mm lungime) și au culoare predominant maro - cenușiu către ocru. Aripile au culoare variabilă de la ocru la maro, cu pete negre. Când sunt pliate, în partea superioară formează trei sau patru zone în formă de diamant de culoare alb - cenușiu. Din acest motiv i se mai spune „molia diamantată” [Talekar & Shelton, 1993; Golizadeh et al., 2007; Sarnthoy et al., 1989; CABI, 2015]. Adulții au activitate maximă la amurg și în timpul nopții. Dacă intrăm într-un lan de rapiță și atingem plantele, vom observa zborul în zig - zag al adulților.
Cocon
Imediat după apariția adulților, începe împerecherea. La câteva ore după împerechere, femelele încep depunerea pontei. O femelă poate depune 80 - 100 ouă. După unii autori, pot depune până la 200 de ouă pe parcursul a zece zile. Aproximativ 95% din femele încep să depună ouă la câteva ore după împerechere. Ouăle sunt ovale, au culoare gălbuie și aproximativ 0,5 mm. De regulă sunt depuse mai ales pe partea inferioară a frunzelor (lângă nervuri de obicei) și mai puțin pe cea superioară. În acest fel, ele sunt protejate de lumina directă, de vânt, de ploi [Silva & Furlong, 2012; Talekar & Shelton, 1993; Åsman et al., 2001].
După 3 - 5 zile de incubație (funcție de temperaturi) apar larvele care încep să se hrănească, fiind recunoscute pentru lăcomia lor. Ele trec prin patru stadii și se hrănesc pe frunze, muguri florali, flori, tulpini și silicve. Ajunse în stadiul patru, larvele nu mai consumă frunze și intră în stadiul prepupal. Acest stadiu durează între 1 - 3 zile, atunci când temperaturile sunt cuprinse între 10 - 200C. Perioada pupală durează și ea între 3 și 20 de zile, funcție de planta gazdă și temperaturi (10 - 300C). Suma de temperaturi necesară dezvoltării unui ciclu de viață este de aproximativ 2600C. Ciclul de viață al unei generații se poate întinde pe 60 - 80 de zile, în funcție de condițiile de temperatură ale zonei, pornind de la pragul de 70C și o temperatură medie de 100C. Dacă temperaturile sunt mai ridicate, numărul de zile necesare dezvoltării se reduce la jumătate [Golizadeh et al., 2007; CABI, 2015; Liu et al., 2002].
În zonele foarte calde din lume, această insectă are un ciclu de viață scurt, în jur de 18 zile, iar populația sa poate crește de până la 60 de ori de la o generație la alta [De Bortoli et al., 2011]. Studiile indică că moliile pot rămâne în zbor continuu câteva zile, putând zbura până la 1.000 km/zi. Nu se cunoaște încă cum reușesc moliile să supraviețuiască la temperaturi scăzute și la altitudine mare [Talekar & Shelton, 1993].
Larvă pe silicvă, 2024
Managementul integrat al moliei verzei
Din păcate, managementul actual al moliei Plutella xylostella (și nu numai) se bazează în mare măsură pe tratamentele chimice. Pentru un control mai bun și mai durabil pe termen lung, managementul acestui dăunător trebuie îmbunătățit, în așa fel încât combaterea să nu se bazeze strict pe aplicarea insecticidelor (mai ales la varză, conopidă).
Combaterea moliei Plutella xylostella se poate face printr-o serie de măsuri profilactice, chimice și biologice (sistemul integrat de combatere).
Cele mai importante măsuri profilactice sunt:
Distrugerea buruienilor (a cruciferelor spontane mai ales);
Efectuarea arăturilor adânci pentru îngroparea resturilor vegetale;
Cultivarea soiurilor tolerante;
Rotația culturilor. Cultivarea pe suprafețe mari a rapiței, practicarea rotațiilor scurte au dus la creșterea populațiilor de Plutella xylostella;
Irigarea prin aspersiune (stresează adulții, larvele cad de pe frunze);
Practicarea intercroping-ului (cu usturoi, salată verde);
Înființarea de culturi capcană pe marginea culturilor [Shelton & Badenes-Perez, 2006; Roșca et al., 2011].
Tratamentele chimice pot fi eficiente doar dacă fermierii monitorizează dăunătorul. Pentru asta, cercetarea pe teren este necesară.
Capcanele cu feromoni pot fi utilizate pentru monitorizarea moliei și stabilirea curbelor de zbor. Curbele de zbor pot fi un bun indicator pentru alegerea momentului optim de combatere. Studiile efectuate în India arată că monitorizarea populațiilor de Plutella xylostella cu ajutorul capcanelor feromonale au dat rezultate foarte bune în combatere. Datele obținute au putut indica un moment optim de aplicare al tratamentelor, în așa fel încât populațiile au fost drastic diminuate și daunele reduse. Pe lângă asta, numărul de tratamente a fost și el redus [Venkata et al., 2001].
În același timp, câmpurile ar trebui verificate de cel puțin două ori pe săptămână. Controlul trebuie să se facă în mai multe puncte din lan sau cultură (cel puțin cinci). Se vor verifica în fiecare punct măcar 0,1 m2. Pe această suprafață se vor număra larvele.
Larvă pe silicvă. Preferă silicvele mai mici
În funcție de planta gazdă, fenologie, există mai multe praguri de dăunare calculate, după cum urmează:
La varză, PED-ul este de 8 - 10 larve/plantă [Tanskii, 1981]. Momentele de observație sunt: rozeta de frunze, începutul formării căpățânii;
La rapiță, pragul economic de dăunare la care trebuie efectuat tratamentul este de 20 - 30 larve/m2 [Canola Encyclopedia, 2015].
În cadrul sistemului de combatere integrată al acestui dăunător, măsurile chimice ocupă un loc fruntaș. În primul stadiu, larvele nu pot fi omorâte datorită modului minier de hrănire. Din stadiul doi ele pot fi combătute chimic.
În România sunt omologate câteva insecticide pentru combaterea moliei la varză: Cipermetrin; Deltametrin; Gama - cihalotrin; Emamectin benzoat; Clorantraniliprol + lambda - cihalotrin; Ciantraniliprol; Spinosad; Clorantraniliprol [Aplicația Pesticide 2.24.3.1, 2024].
Pentru rapiță nu sunt omologate produse în țara noastră, conform Aplicației Pesticide 2.24.3.1 din 2024. Dintre pesticidele recomandate, grupul chimic al piretroizilor este cel mai important și mai utilizat pentru controlul moliei P. xylostella.
Controlul chimic al P. xylostella se recomandă atunci când densitatea larvelor depășește pragul economic, care variază în raport cu stadiul de creștere al culturii și condițiile de mediu [Micic, 2005; Miles, 2002]. Utilizarea de multe ori incorectă a acestor substanțe chimice a crescut rezistența moliei verzei [Carazo et al., 1999; Castelo Branco et al., 2001]. Multe studii arată că, populațiile de P. xylostella sunt considerate foarte predispuse la dezvoltarea rezistenței la insecticide. De altfel, P. xylostella a fost primul dăunător raportat a fi rezistent la dicloro-difenil-triclor-etan (DDT), la numai trei ani de la începutul utilizării sale [Ankersmit, 1953]. Mai târziu a dezvoltat rezistență semnificativă la aproape orice insecticid aplicat, inclusiv la substanțe chimice noi [Sarfraz & Keddie, 2005; Ridland & Endesby, 2011].
Gestionarea populației de P. xylostella folosind metode de control chimice poate fi o strategie interesantă dacă este bine utilizată, datorită numărului mare de grupuri chimice cu ingrediente active diferite, care permite utilizarea alternativă a substanțelor chimice, prevenind dezvoltarea rezistenței. Aceste produse pot fi utilizate împreună cu alte tehnici de control pentru a reduce numărul de aplicații de pesticide și pentru a îmbunătăți calitatea producției.
Un aspect foarte important în alegerea produsului chimic este selectivitatea acestuia, deoarece multe substanțe chimice au o selectivitate ridicată pentru gazdă, dar nu și pentru agenții de control biologic, care contribuie la menținerea populațiilor considerate benefice pentru managementul integrat al P. xylostella.
Capcană cu feromoni
În combaterea biologică a moliei P. xylostella pot fi utilizate preparate pe bază de Bacillus thuringiensis subsp. kurstaki (tulpina PB 34). Managementul integrat al P. xylostella bazat pe controlul biologic cu bacteria entomopatogenă B. thuringiensis este o metodă importantă pentru reducerea densității populației acestui dăunător în culturile de Brassicaceae. Cu toate acestea, utilizarea acestui entomopatogen trebuie să fie bine planificată, deoarece această molie se află printre primele insecte care au dezvoltat rezistență la insecticidul biologic pe bază de Bacillus thuringiensis [Kirsch & Schmutlerer, 1988; Tabashnik, 1990].
De interes sunt și fungii entomopatogeni Metarhizium anisopliae și Beauveria bassiana pentru controlul P. xylostella. Beauveria bassiana este disponibilă ca produs pe piață pentru gestionarea insectelor dăunătoare. Utilizată în combaterea moliei verzei, a redus cu succes populațiile și s-a constatat că se răspândește eficient de la moliile contaminate la cele sănătoase [Sarfraz et al., 2005].
În mod natural, toate stadiile moliei Plutella xylostella sunt atacate de numeroși parazitoizi și prădători, parazitoizii fiind cei mai studiați. Peste 90 de specii parazitoide atacă molia diamantată [Goodwin, 1979].
Paraziții de ouă aparținând genurilor polifage Trichogramma contribuie puțin la controlul natural, necesitând eliberări frecvente de viespi în câmp. Paraziții de larve sunt cei mai predominanți și în același timp cei mai eficienți. De exemplu, în Brazilia au fost observate șapte specii de parazitoizi într-o populație de P. xylostella la culturile de varză, cele mai frecvente fiind două specii: Diadegma liontiniae și Apanteles piceotrichosus. Cotesia plutellae și Actia sp., mai numeroase în trecut, au devenit parazitoizi minori în prezent.
Parazitoizii din genul Trichogramma se numără printre agenții entomofagi care au fost mult studiați pentru P. xylostella. Specia T. pretiosum, tulpina Tp8, poate parazita aproximativ 15 ouă de P. xylostella în prima sau a doua generație atunci când sunt crescute în această gazdă în condiții de laborator, cu apariție de 100% și 10 până la 11 zile pentru apariția adulților [Volpe et al., 2006]. Mai mult, modalitatea optimă de a crește în masă acest parasitoid în laborator este de a folosi ouă lipite pe cartoane de culoare albastră, verde sau albă [Magalhaes et al., 2012].
Dintre prădătorii moliei Plutella xylostella, de interes este P. nigrispinus, care are un potențial mare de utilizare în controlul acesteia. P. nigrispinus a fost raportat că se hrănește cu P. xylostella în culturile de crucifere, consumând în medie 11 larve sau 5 - 6 pupe în 24 de ore [Silva - Torres et al., 2010; Vacari et al., 2012]. Despre adulții de Orius insidiosus există date care arată că pot consuma în jur de 6 ouă de Plutella xylostella în 24 de ore [Brito et al., 2009].
Numeroase studii se fac astăzi cu privire la utilizarea nematozilor entomopatogeni în combaterea moliei verzei Plutella xylostella. Cercetările efectuate până acum arată că, nematozii Steinernema carpocapsae pot fi utilizați în combatere mai ales atunci când insecticidele se dovedesc ineficiente [Schroer et al., 2005]. Pentru că molia depune ouăle pe suprafața inferioară a frunzelor iar larvele tinere se hrănesc în aceeași zonă, soluția cu nematozi trebuie direcționată cât se poate de mult acolo. Eficacitatea tratamentului depinde foarte mult de tehnica de pulverizare [Brusselman et al., 2012].
Insecticidele de origine vegetală sunt, de asemenea, un grup foarte important pentru gestionarea populației acestui dăunător. Dintre acestea, extractul de neem (Azadirachta indica) a prezentat rezultate semnificative în controlul P. xylostella [Myron et al., 2012].
Plutella la ceas de seară. După ce am curățat capcana, un fluturaș s-a așezat comod pe acoperișul capcanei
Bibliografie
Ankersmit G. W., 1953. DDT resistance in Plutella maculipennis (Curt.) Lepidoptera in Java. Bulletin of Entomological Research 1953;44: 421 – 425.Åsman K., Ekbom B., Rämert B., 2001. Effect of Intercropping on Oviposition and Emigration Behavior of the Leek Moth (Lepidoptera: Acrolepiidae) and the Diamondback Moth (Lepidoptera: Plutellidae). Environmental. Entomology 30(2): 288-294.Brito J. P., Vacari A. M., Thuler R. T., De Bortoli S. A., 2009. Aspectos biológicos de Orius insidiosus (Say, 1832) predando ovos de Plutella xylostella (L., 1758) e Anagasta kuehniella (Zeller, 1879). Arquivos do Instituto Biológico 2009; 76(4): 627–633.Brusselman E., Beck B., Pollet S., Temmerman F., Spanoghe P., Moens M., Nuyttens D., 2012. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables. Pest Management Science 2012;68(3): 444 – 453.Carazo E. R., Cartin V. M. L. , Monge A. V., Lobo J. A. S., Araya L. R., 1999. Resistencia de Plutella xylostella a deltametrina, metamidofós y cartap em Costa Rica. Manejo Integrado de Plagas 1999; 53: 52–57.Castelo Branco M., França F. H., Medeiros M. A., Leal J. G. T., 2001. Uso de inseticidas para o controle da traça-do-tomateiro e da traça-das-crucíferas: um estudo de caso. Horticultura Brasileira 2001; 19(1): 60 – 63.Castelo Branco M., França F. H., Villas Boas G. L., 1997. Traça-das-crucíferas (Plutella xylostella). Brasília: Embrapa Hortaliças; 1997, 4p.CABI. 2015. Plutella xylostella. CABI.org, Invasive Species Compendium. [http://www.cabi.org/isc/datasheet/42318].Canola Council of Canada, 2021. Diamondback moth. Winnipeg, Canada: Canola Council of Canada. https://www.canolacouncil.org/.../insects/diamondback-moth/Canola Encyclopedia. Diamondback Moth. Canola Council of Canada, n.d.: [http://www.canolacouncil.org/can.../insects/diamondbackmoth/].De Bortoli S. A., Vacari A. M., Goulart R. M., Santos R. F., Volpe H. X. L., Ferraudo A. S., 2011. Capacidade reprodutiva e preferência da traça-das-crucíferas para diferentes brassicáceas. Horticultura Brasileira 2011; 29(2): 187 – 192.Furlong, M. J., Wright, D. J., Dosdall, L. M., 2013. Diamondback moth ecology and management: problems, progress and prospects. Annual Review of Entomology, 58:517-541.Gurr G. M., Wratten S. D., 2000. Measures of success in biological control. Dordrecht: Kluwer Academic Publishers; 2000, p 430.Golizadeh A., Karim K., Yaghoub F., Habib A., 2007. Temperature-dependent Development of Diamondback Moth, Plutella Xylostella (Lepidoptera: Plutellidae) on Two Brassicaceous Host Plants. Insect Science 14.4: 309 -316.Goodwin S., 1979. Changes in the numbers in the parasitoid complex associated with the diamondback moth, Plutella xylostella (L.) (Lepidoptera) in Victoria. Australian Journal of Zoology 1979; 27(6): 981 – 989.Gong, W., Yan, H.H., Gao, L., Guo, Y.Y., Xue, C.B., 2014. Chlorantraniliprole resistance in the diamondbackmMoth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 107(2): 806 - 814.Kirsch K., Schmutlerer H., 1988. Low efficacy of a Bacillus thuringiensis (Berl.) formulation in controlling the diamondback moth Plutella xylostella (L.), in the Philippines. Journal of Applied Entomology 1988;105(1-5): 249–255.Liu S. S., Chen F. Z., Zalucki M. P., 2002. Development and survival of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), at constant and alternating temperatures. Environmental Entomology 31: 1 - 12.Magalhães G. O., Goulart R. M., Vacari A. M., De Bortoli S. A., 2012. Parasitismo de Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) em diferentes hospedeiros e cores de cartelas. Arquivos do Instituto Biológico 2012; 79(1): 55 – 90.Myron P. Zalucki, Asad Shabbir, Rehan Silva, David Adamson, Liu ShuSheng, Michael J. Furlong, 2012. Estimating the Economic Cost of One of the World's Major Insect Pests, Plutella xylostella (Lepidoptera: Plutellidae): Just How Long is a Piece of String?, Journal of Economic Entomology, 105(4):1115-1129.Miles M., 2002. Insect Pest Management II – Etiella, False Wireworm and Diamondback Moth. GRDC Research updates. http://www.grdc.com.au, 2002.Micic S., 2005. Chemical Control of Insect and Allied Pests of Canola. Farmnote No. 1/2005. Department of Agriculture, South Perth, Western Australia, Australia.Ridland P. M., Endersby N. M., 2011. Some Australian populations of diamondback moth, Plutella xylostella (L.) show reduced susceptibility to fipronil. In: Srinivasan R., Shelton A. M., Collins H. L. (eds.) Sixth international workshop on management of the diamondback moth and other crucifer insect pests. Nakhon Pathom, Thailand; 2011, 21 – 25.Roşca I., Oltean I., Mitrea I., Tãlmaciu M., Petanec D. I., Bunescu H. Ş., Rada I., Tãlmaciu N., Stan C., Micu L. M., 2011. Tratat de Entomologie generală şi specială, Editura “Alpha MDN”, Buzău, p. 279 - 296;Sarfraz M., Dosdall L. M., Keddie B. A., 2006. Diamondback moth-host plant interactions: implications for pest management. Crop Protection 2006; 25(7): 625 – 639.Sarfraz M., Keddie B. A., 2005. Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lepidoptera: Plutellidae). Journal of Applied Entomology 2005; 129(3): 149 – 157.Silva - Torres C. S. A., Pontes I. V. A. F., Torres J. B., Barros R., 2010. New records of natural enemies of Plutella xylostella (L.) (Lepidoptera: Plutellidae) in Pernambuco, Brazil. Neotropical Entomology 2010; 39(5): 835 – 838.Shelton A. M., Badenes-Perez E. 2006. Concepts and applications of trap cropping in pest management. Annual Review of Entomology 51: 285 – 308.Schroer S., Sulistyanto D., Ehlers R. U., 2005. Control of Plutella xylostella using polymer-fomulated Steinernema carpocapsae and Bacillus thuringiensis in cabbage fields. Journal of Applied Entomology 2005; 129(4): 198 – 204.Talekar N. S., Shelton A. M., 1993. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology 1993; 38(1): 275 – 301.Tabashnik B. E., Cushing N. L., Finson N., Johnson M. W., 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 1990; 83(5): 1671 – 1676.Vacari A. M., De Bortoli S. A., Torres J. B., 2012. Relation between predation by Podisus nigrispinus and developmental phase and density of its prey, Plutella xylostella. Entomologia Experimentalis et Applicata 2012; 145(1): 30 – 37.Van Lenteren J., Godfray H. C. J., 2005. Europen in science in the Enlightenment and the discovery of the insect parasitoid life cycle in The Netherlands and Great Britain. Biological Control 2005; 32(1): 12 – 24.Van Lenteren, J., 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 2012; 57(1): 1 – 20.Venkata G., Reddy P., Guerrero A., 2001. Optimum Timing of Insecticide Applications against Diamondback Moth Plutella Xylostella in Cole Crops Using Threshold Catches in Sex Pheromone Traps. Pest Management Science 57.1: 90 - 94.Volpe H. X. L., De Bortoli A. S., Thuler R. T., Viana C. L. T. P., Goulart R. M., 2006. Avaliação de características biológicas de Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) criado em três hospedeiros. Arquivos do Instituto Biológico 2006; 73(3): 311 – 315.Zalucki, M. P., Shabbir, A., Silva, R., Adamson, D., Liu, S. S., Furlong, M. J., 2012. Estimating the economic cost of one of the world's major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string?. Journal of Economic Entomology, 105(4): 1115 - 1129.Waage J. K., Greathead D. J., 1988. Biological Control: challenges and opportunities. Philosophical Transactions of the Royal Society of London 1988; 318 (1189): 111 – 128.
Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor
Foto: Otilia Cotuna
Abonamente Revista Fermierului – ediția print, AICI!
Recent, Eurostat a publicat date privind vânzările de pesticide în țările Uniunii Europene. Potrivit acestora, în 2022 a existat o scădere bruscă a cantității de pesticide vândută în Uniunea Europeană, în mare parte din cauza creșterii prețurilor.
Aproximativ 322.000 de tone de pesticide au fost vândute în 2022, în scădere cu 10% față de cantitatea vândută în anul 2021. Există o gamă largă de pesticide vândute în UE, principalele categorii fiind „fungicide și bactericide” (43% din volumele vânzărilor în 2022), „erbicide și insecticide ” (35%) și „insecticide și acaricide” (14%).
Dintre țările UE, Franța (21%), Spania (18%), Germania (15%) și Italia (14%) au înregistrat cea mai mare pondere a pesticidelor vândute în anul 2022. Aceste patru țări sunt principalii producători agricoli ai Uniunii Europene.
Între 2011 și 2022, au existat o serie de țări din UE care au înregistrat scăderi abrupte în vânzările lor de pesticide. Cele mai puternice scăderi au fost înregistrate în Italia (-37%), Portugalia (-36%) și Grecia (-33%).
Abonamente Revista Fermierului – ediția print, AICI!
Suspendarea taxelor de import și a cotelor la exporturile ucrainene către Uniunea Europeană va fi prelungită cu încă un an, după adoptarea de către Consiliu și votul din 23 aprilie în Parlamentul European. „Prin urmare, UE își îndeplinește din nou angajamentul de a sprijini Ucraina atât timp cât este nevoie.”
Așa-numitele „Măsuri Comerciale Autonome”, sunt în vigoare din iunie 2022 și reprezintă un pilon cheie al sprijinului UE pentru Ucraina, oferind un colac de salvare economiei țării prin accesul la piața Uniunii Europene.
Însă, Măsurile Comerciale Autonome reînnoite conțin un mecanism de protejare consolidat, ținând cont și de preocupările părților interesate din UE și având în vedere o creștere semnificativă a importurilor unor produse agricole din Ucraina către UE în 2022 și 2023.
Astfel, mecanismul de protejare permite luarea unor măsuri de remediere rapide în cazul unor perturbări semnificative pe piața UE sau pe piețele unuia sau mai multor state membre.
În plus, se aplică o frână de urgență pentru ouă, păsări, zahăr, ovăz, porumb, crupe și miere, care va fi declanșată automat dacă volumele importurilor vor atinge valoarea medie anuală a importurilor înregistrate între 1 iulie 2021 și 31 decembrie 2023.
Noile Măsuri Comerciale Autonome vor intra în vigoare pe 6 iunie, după ce regimul actual expiră la 5 iunie 2024. Ele vor fi în vigoare până la 5 iunie 2025.
Abonamente Revista Fermierului – ediția print, AICI!
Aduc în atenția fermierilor fungul Fusarium graminearum care produce boala numită „albirea și înroșirea spicelor”. În zonele din țară unde au căzut precipitații în perioada înfloritului, iar temperaturile au fost favorabile realizării infecțiilor, este posibil să apară fuzarioza.
Schimbările climatice din ultimii ani au influențat pozitiv dezvoltarea fungilor din genul Fusarium, favorizând apariția epidemiilor la grâu. Cea mai recentă epidemie de Fusarium la cerealele din Câmpia Banatului (și nu numai) a fost în anul 2019, an în care calitatea a fost foarte scăzută, în principal din cauza prezenței micotoxinelor fusariene în cantități care au depășit limitele permise.
Pierderile produse de F. graminearum la grâu în anii epidemici pot fi uriașe. Pagubele se datorează în mare parte sterilității spicelor, MMB-ului scăzut (masa a o mie de boabe), dar mai ales prezenței micotoxinelor în cariopse.
Fusarium graminearum este un patogen deosebit de periculos al cerealelor deoarece produce micotoxine încadrate în două clase chimice: trichothecene și zearalenon. Dintre trichothecene amintim: vomitoxina (deoxynivalenol sau DON), micotoxina T – 2, diacetoxyscirpenol (DAS), monoacetoxyscirpenol (MAS) şi nivalenol. Aceste micotoxine sunt iritanţi puternici şi au fost asociate atunci când sunt consumate cu simptome ca: vomă, refuzul hranei şi posibil ulcer gastric. Cele mai semnificative trichothecene sunt toxina T – 2 şi deoxynivalenolul, care apar în cantităţi destul de mari la cereale. Zearalenonul face parte din a doua clasă chimică de toxine produse de F. graminearum. Când este consumat de animale este asociat cu probleme de reproducere, cum sunt: avorturile, căldurile false, reabsorbţia fetusului şi a mumiilor [Cotuna & Popescu, 2009].
Fusarium și Alternaria sp. (foto din anul 2023)
În Câmpia Banatului, în anul 2023 au existat lanuri infectate, însă incidența spicelor atacate a fost mai scăzută, la fel și intensitatea. De la epidemia de Fusarium graminearum din anul 2019, putem aprecia că acest patogen nu a mai creat probleme deosebite în Banat, deoarece nu s-au întrunit condițiile climatice (precipitații continue și temperaturi moderate). Vom vedea ce va aduce această primăvară.
Prin intermediul acestui articol venim în sprijinul dumneavoastră cu informații despre tabloul simptomatic al bolii, biologia, epidemiologia și „combaterea” patogenului Fusarium graminearum. Aceste informații vă vor ajuta în viitor să vă protejați din timp culturile.
Micotoxinele fusariene, pericol pentru sănătatea oamenilor și animalelor
În fuzarioza grâului pot fi implicate mai multe specii de Fusarium. Studii numeroase arată că fuzarioza spicelor de grâu poate fi produsă de Fusarium graminearum, Fusarium culmorum, Fusarium nivale, Fusarium poae, Fusarium sporotrichioides [Miller, 1994; Lidell, 2003; Wegulo, 2012; Zrcková et al., 2019]. Dintre speciile menționate, Fusarium graminearum este prezentă în regiunile temperate cu climat mai cald, comparativ cu Fusarium culmorum care preferă zonele mai reci [Wang & Miller, 1988; Snijders & Perkowski, 1990; Miller et al., 1991; Miller, 2002]. În Câmpia Banatului, specia predominantă care produce infecții la spic este F. graminearum [Cotuna et al., 2013; Cotuna et al., 2022].
Dintre speciile de Fusarium producătoare de DON, F. graminearum este considerată cea mai importantă [Paraschivu et al., 2014; Paul et al., 2005; Anon, 1993c]. Deoxynivalenolul (DON) aparține familiei chimice de sequiterpene, fiind derivat din trichodiene (precursorul biochimic al tuturor trichothecenelor). DON - ul este foarte stabil din punct de vedere chimic. Semințele infectate de Fusarium conțin întotdeauna și micotoxine fusariene. Dintre acestea, DON - ul a fost găsit frecvent în cantități mari [McMullen et al., 1997]. După Wegulo (2012), cu cât procentul de boabe fusariate este mai mare cu atât și cantitatea de DON va fi mai ridicată. De altfel, marea majoritate a cercetătorilor corelează prezența deoxynivalenolului în cariopse cu intensitatea atacului din câmp și procentul de boabe fusariate [Cowger & Arellano, 2013]. Dacă ajunge în hrana oamenilor, deoxynivalenolul poate produce intoxicații alimentare, care se manifestă prin greață, vărsături, diaree, dureri de cap, dureri abdominale, febră etc [Lidell, 2003; Sobrova et al., 2010].
Până în acest an, limita maximă de DON admisă de legislația europeană în cerealele neprocesate era de 1250 ppb (1,25 ppm) [Commission Regulation (EC) No 1881/2006].
În Regulamentul (UE) 2024/1022 al CE din 8 aprilie 2024, de modificare a Regulamentului (UE) 2023/915 cu privire la nivelurile maxime de deoxinivalenol în produsele alimentare, limita maximă de DON permisă la cerealele neprocesate a scăzut la 1000 ppb. Noile reglementări intră în vigoare începând cu data de iulie 2024 și nu se aplică retroactiv.
A doua micotoxină importantă produsă de Fusarium graminearum este „toxina T - 2”, care apare în cantități semnificative la cereale, alături de deoxynivalenol [Annon, 1993b]. Intoxicația se manifestă prin simptome de febră, vomă, convulsii, anemie, inflamații acute ale aparatului digestiv.
Alt metabolit toxic produs de fungul F. graminearum este zearalenona (ZON). Zearalenona apare la grâul fusariat alături de DON și T - 2. Această toxină afectează eficiența reproductivă, nu și pofta de mâncare. Sindromul estrogenic ce apare în urma ingerării de hrană contaminată se caracterizează prin: umflarea glandelor mamare, hipertrofia uterină, umflarea vulvei, infertilitate [Marasas, 1991]. Cei mai sensibili sunt porcii.
Limitele maxime admise de ZON și T - 2 în grâul neprocesat sunt de 100 ppb. Cele trei micotoxine, DON, ZON și T - 2 nu sunt considerate carcinogenice. Zearalenona nu se transmite prin lapte sau alte produse lactate.
Factorii de risc pentru apariția infecțiilor
Risc crescut de infecții cu Fusarium graminearum se înregistrează în anii când se întrunesc următorii factori:
Temperaturi optime pentru realizarea infecțiilor. După Anderson (1948), temperatura optimă pentru realizarea infecțiilor este de 250C, indiferent de cât timp durează umezeala. După De Wolf et al. (2003), contează durata în ore a temperaturilor cuprinse între 15 - 300C, înainte cu șapte zile de înflorit. În condiții de vreme caldă cu temperaturi cuprinse între 25 - 300C și umiditate continuă, simptomele de Fusarium la spic (albire) pot apărea în 2 - 4 zile de la realizarea infecției [Wegulo, 2012]. Astfel, o cultură aparent sănătoasă, brusc poate să prezinte simptome de boală;
Precipitațiile. Precipitațiile continue dinainte de înflorit și în timpul dezvoltării cariopselor favorizează acumularea de cantități mari de DON în cereale. Cantitățile de precipitații din lunile mai și iunie predispun cerealele la infecția cu Fusarium. Perioadele în care grâul poate fi infectat sunt la înflorit sau imediat după înflorit [Hernandez Nopsa et al., 2012; Wegulo, 2012]. De Wolf et al. (2003) arată importanța duratei în ore a precipitațiilor înainte cu șapte zile de înflorit;
Umiditatea relativă a aerului (UR%). Cu cât expunerea la umezeală este mai îndelungată, intensitatea atacului la spic crește. Chandelier et al. (2011), într-un studiu efectuat pe o perioadă de șapte ani, arată o corelație puternică între umiditatea relativă medie de peste 80% și cantitatea de DON acumulată în cariopse;
Tehnologiile practicate în prezent de către fermieri pot influența pozitiv infecțiile cu Fusarium, cât și acumularea de micotoxine. Sistemele de cultivare „minimum tillage” sau „no tillage” (utile pentru conservarea solului), densitățile mari practicate, lipsa rotației, au dus la creșterea sursei de inocul în resturile vegetale ce rămân la suprafața solului [Unger, 1994; Watkins, 1994; Matei et al., 2010];
Soiurile sensibile.
Recunoașterea simptomelor
Fusarium graminearum poate ataca plantele de cereale păioase pe tot parcursul perioadei de vegetație, dacă condițiile climatice preferate se întrunesc.
Tabloul simptomatic al bolii se prezintă după cum urmează:
Plăntuţele care provin din seminţe infectate se îngălbenesc şi în cele din urmă putrezesc;
În faza de înfrăţire, rădăcinile şi coletul sunt brunificate din cauza infecţiilor realizate de miceliul şi clamidosporii din sol. Plantele atacate continuă să vegeteze slab şi vor forma spice sterile;
Forma cea mai gravă de atac este după înspicare. Spicele, iniţial se albesc parţial (câteva spiculeţe) sau total, apoi se înroşesc şi se acoperă cu un înveliş micelian, alb – roz sau alb – rubiniu, uneori portocaliu - somon, pe care se observă sporodochiile ciupercii (forma imperfectă). Pe spicele înroşite (pe palee, ariste sau boabe) se observă puncte negre care sunt periteciile ciupercii (forma perfectă). Cariopsele infectate sau fuzariate rămân mici, zbârcite, cenuşii sau rozii iar germinaţia şi puterea de străbatere va fi slabă [Popescu, 2005].
Ciclul de viață
Fusarium graminearum este agentul etiologic dominant al fuzariozei spicului la cerealele păioase cultivate în România. Ciuperca rezistă în resturile de plante vegetale, în sol și în semințe. Vremea umedă prelungită în timpul perioadei de vegetație favorizează creșterea și sporularea ciupercii. Sporii ciupercii sunt purtați de vânt și de picăturile de apă pe spicele de grâu. Grâul este susceptibil a fi infectat în perioada înfloritului și când cariopsele încep să se formeze [Popescu, 2005].
Fusarium graminearum rezistă în sol sub formă de miceliu saprofit, clamidospori şi peritecii. O sursă importantă de transmitere este sămânţa infectată din care ies plăntuţe bolnave care mor (infecţie sistemică). Infecţiile primare pot fi realizate de micelii sau clamidosporii din sol dar şi de ascosporii şi conidiile care ajung pe părţile aeriene ale plantelor. După realizarea infecției, miceliul care se dezvoltă intracelular va intra în sporogeneză, formându-se astfel conidiile ce asigură infecţiile secundare (foarte păgubitoare mai ales în perioada înfloritului) – Popescu, 2005.
Dezvoltarea acestui patogen este favorizată de vremea umedă (umiditatea aerului peste 90%, prezenţa ploilor) şi de temperaturile moderate (peste 200C) şi apoi de factorii agrofitotehnici (monocultura, solurile acide, azotul în exces, semănatul des, sensibilitatea soiurilor).
Infecţia continuă şi în depozite. Contaminarea cu micotoxinele produse de F. graminearum este asociată cu amânarea excesivă a recoltatului şi cu depozitarea cerealelor umede. Acumularea de micotoxine este masivă la temperaturi de 21 – 290C şi la o umiditate a boabelor de peste 20%.
Managementul integrat al fuzariozei grâului
Putem combate sau nu fuzarioza la cereale? O întrebare la care este greu de răspuns. Măsurile din cadrul sistemului de combatere integrată pot ține sub control destul de puțin fuzarioza dar nu întotdeauna ne feresc de infecții. De ce? Pentru că orice măsuri am respecta, condițiile climatice sunt esențiale în realizarea infecțiilor.
Atac la cariopse. Stanga, cariopse fusariate, dreapta cariopsă aparent sănătoasă (foto din anul 2023)
Măsuri profilactice
Măsurile de profilaxie sunt foarte importante dar nu ne feresc de infecții dacă condițiile climatice sunt favorabile patogeniei. Totuși, respectarea lor ne poate ajuta, în sensul că vom avea o rezervă mai mică în sol de inocul. În acest sens, este bine ca fermierii să respecte următoarele măsuri:
Cultivarea de soiuri adaptate climei locale şi zonei unde vor fi cultivate.
Cultivarea unor soiuri care tolerează mai bine patogenul. Despre rezistență totală nu putem discuta. Rezistența soiurilor de grâu la infecția cu Fusarium este foarte importantă și intens studiată astăzi. Sunt descrise până acum cinci tipuri de rezistență: tipul I - rezistența la infecția inițială (reacții de apărare); tipul II - rezistența la răspândirea agentului patogen în țesutul infectat; tipul III - rezistența la infecție a semințelor; tipul IV - toleranța la infecție; tipul V - rezistența la micotoxine [Mesterhazy, 1995; Ma et al., 2009; Kosaka et al., 2015; Zhang et al., 2020]. După Bai & Shaner (2004), crearea unor soiuri cu rezistență la Fusarium poate fi o strategie foarte bună pentru controlul acestei boli. În SUA, preocupări de ameliorare a grâului pentru rezistența la Fusarium sp. există de prin anul 1929. Un studiu din 1963 arată că, după un ciclu de cercetari de nouă ani, toate plantele de grâu pot fi infectate în proporție mai mare sau mai mică [Schroeder & Christensen, 1963].
Controlul dăunătorilor în lanurile de cereale nu trebuie neglijat, deoarece se ştie că favorizează infecţiile cu Fusarium graminearum.
Densităţile mari trebuie evitate.
Fertilizarea cu azot şi alte substanţe nutritive să se facă în mod echilibrat.
Rotaţia culturilor trebuie respectată, deoarece s-a constatat că reduce riscul de contaminare cu micotoxine produse de ciuperca Fusarium graminearum.
Resturile vegetale să fie îngropate prin intermediul arăturii.
Recoltarea la timp, uscarea la 24 de ore de la recoltare şi supravegherea umidităţii boabelor la depozitare [Cotuna & Popescu, 2009].
Dacă aceste măsuri sunt respectate, sursa de inocul va fi diminuată, NU şi eliminată.
Măsuri chimice
În funcție de condițiile climatice, tratamentele chimice pot fi eficiente sau nu. Tratarea semințelor înainte de semănat este esențială în prevenirea primelor infecții.
În România sunt omologate următoarele substanțe pentru tratarea semințelor de cereale păioase: Triticonazol; Tebuconazol; Fludioxonil + teflutrin (insecticid); Fludioxonil + protioconazol + tebuconazol; Fludioxonil; Difenoconazol + fludioxonil; Difenoconazol + fludioxonil + tebuconazol; Difenoconazol; Fludioxonil + fluxapyroxad + triticonazol; Ipconazol; Fluxapyroxad; Fludioxonil + sedaxan; Difenoconazol + fludioxonil + sedaxan; Bixafen + tebuconazol [după Aplicația PESTICIDE 2.24.3.1, 2024].
Tratamentele din vegetație
La modul general, în literatura de specialitate se recomandă două tratamente în timpul sezonului de vegetație, după cum urmează: primul tratament la începutul înspicării; iar al doilea tratament la sfârșitul înfloritului.
Studiile efectuate pentru stabilirea momentelor optime de efectuare a tratamentelor (când au eficacitate maximă) recomandă următoarea strategie:
Tratament la BBCH 59 - când grâul nu este înflorit - eficiență ridicată.
Tratament la BBCH 63 - 65 - început înflorit, moment optim pentru bolile spicului în general.
Tratament la BBCH 69 - sfârșit înflorit - nu se recomandă (prea târziu pentru tratament) - se poate aplica doar în situații grave cu risc de infecții secundare când sunt ploi continue după înflorit.
Pentru tratamentele în vegetație sunt omologate următoarele substanțe: Azoxistrobin; Tebuconazol; Metconazol; Azoxistrobin + protioconazol; Protioconazol + tebuconazol; Azoxistrobin + tebuconazol; Kresoxim - metil + mefentrifluconazol; Benzovindiflupir + protioconazol; Benzovindiflupir; Protioconazol; Protioconazol + spiroxamină + tebuconazol; Ciprodinil; Fenpropidin; Difenoconazol + tebuconazol; Tebuconazol + trifloxistrobin; Protioconazol + spiroxamină + trifloxistrobin; Protioconazol + trifloxistrobin; Boscalid + protioconazol; Fluxapyroxad + piraclostrobin; Mefentrifluconazol + piraclostrobin; Bromuconazol + tebuconazol; Proquinazid + protioconazol [după Aplicația PESTICIDE 2.24.3.1, 2024].
Fungicidele omologate trebuie utilizate doar în dozele recomandate de producători. Nu măriți dozele. Mărirea dozelor duce la apariția fenomenului de rezistență, iar rezistența la pesticide este o problemă mare a agriculturii moderne.
Tratamentele trebuie efectuate doar în zilele în care nu bate vântul și temperaturile nu sunt ridicate. Dacă după efectuarea tratamentelor intervin ploi, va trebui să repetați. Este foarte important să fie respectați timpii de pauză până la recoltat. Fungicidele utilizate la cereale au timpi de pauză destul de mari, începând de la 35 până la 50 zile.
Măsuri biologice
Combaterea biologică este foarte rar utilizată în combaterea fuzariozei la grâu și nu numai. De interes sunt antibioticele produse de bacterii (Bacillus subtilis) și fungi (Penicillium, Trichoderma, Trichothecium): fitobacteriomicina, nifimicina, fitoflavina, lavendromicina, trichotecina [Popescu, 2005].
În prezent, există un produs biologic omologat în România pe bază de Pythium oligandrum (M1 x 106 oospores/g Pythium oligandrum) pentru tratarea fuzariozei în perioada de vegetație. Tratamentele cu agenți biologici trebuie efectuate preventiv, nu curativ.
De reținut, recoltele contaminate cu micotoxine fusariene nu pot fi destinate nici pentru panificaţie, nici pentru hrana animalelor, din cauza intoxicaţiilor grave pe care le produc.
Bibliografie
Andersen, A. L., 1948. The development of Gibberella zeae head blight of wheat. Phytopathology, 38, 599 – 611.Anon, 1993b. In IARC Monographs on the evaluation of carcinogenic risk to humans, vol. 56, International Agency for Research an Cancer, Lyon, France, pp. 467 - 488.Anon, 1993c. In IARC Monographs on the evaluation of carcinogenic risk to humans, vol. 56, International Agency for Research an Cancer, Lyon, France, pp. 397 - 444.Bai, G., Shaner, G., 2004. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 42: 135 - 161.Chandelier, A., Nimal, C., André, F., Planchon, V., Oger, R., 2011. Fusarium species and DON contamination associated with head blight in winter wheat over a 7-year period 92003–2009) in Belgium. Eur. J. Plant Pathol., 130, 403 – 414.Cotuna, O., Sărățeanu, V., Durău, C., Paraschivu, M., Rusalin, G., 2013. Resistance reaction of some winter wheat genotipes to the attack of Fusarium graminearum L. Schw. in the climatic conditions of Banat plain, Research Journal of Agricultural Science, 45 (1), p. 117 - 122.Cotuna O., Paraschivu M., Sărăţeanu V., Partal E., Durău C. C., 2022. Impact of Fusarium head blight epidemics on the mycotoxins’ accumulation in winter wheat grains, Emirates Journal of Food and Agriculture, 34 (11), 949 - 962.Cotuna O., Popescu G., 2009. Securitatea și calitatea produselor vegetale, siguranța vieții, Editura Mirton, Timișoara, 327 p..Cowger, C., Arellano, C., 2013. Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes. Phytopathology 103: 460 - 471.De Wolf, E. D., Madden, L. V., Lipps, P. E., 2003. Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology, 93, 428 – 435.Hernandez Nopsa, J., Baenziger, P. S., Eskridge, K. M., Peiris, K. H. S., Dowell, F. E., Harris, S. D., Wegulo, S. N., 2012. Differential accumulation of deoxynivalenol in two winter wheat cultivars varying in FHB phenotype response under field conditions. Can. J. Plant Pathol. 34, 380 – 389.Kosaka, A., Manickavelu, A., Kajihara, D., Nakagawa, H., Ban, T., 2015. Altered gene expression profiles of wheat genotypes against Fusarium head blight. Toxins 72: 604 - 620.Liddell, C. M., 2003. Systematics of Fusarium species and allies associated with Fusarium head blight. In Fusarium Head Blight of Wheat and Barley; Leonard, K. J., Bushnell, W. R., Eds.; American Phytopathological Society: St. Paul, MN, USA, 2003; pp. 35 – 43.Ma, H., Ge, H., Zhang, X., Lu, W., Yu, D., Chen, H., Chen, J., 2009. Resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese barley. J. Phytopathology, 157, 166 – 171.Marasas, W. F. O., 1991. In Mycotoxins and Animal Foods (J. E., Smith, and R. S., Henderson, editors), CRC Press, Inc., pp. 119 - 139.Matei, G., Păunescu, G., Imbrea, F., Roşculete E., Roşculete, C., 2010. Rotation and fertilization - factors in increasing wheat production and improving the agro productive features of the brown reddish soil from central area of Oltenia, Research Jurnal Of Agricultural Science, Vol. 42 (1). USAMVB Timișoara, pag. 182 - 189.Mesterhazy, A. I., 1995. Types and components of resistance to Fusarium head blight of wheat. Plant breeding 114 5: 377 - 386.McMullen, M., Jones, R., Gallenberg, D., 1997. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis. 81:1340 - 1348.Miller, J. D., Greenhalgh, R., Wang, Y., Lu, M., 1991. Trichothecene chemotypes of three Fusarium species. Mycologia, 83, 121 – 130.Miller, J. D., 1994. Epidemiology of Fusarium ear diseases of cereals. In Mycotoxins in Grain. Compounds Other than Aflatoxin; Miller, J. D., Trenholm, H. L., Eds.; Eagan Press: St. Paul, MN, USA, 1994; pp. 19 – 36.Miller, J. D., 2002. Aspects of the ecology of Fusarium toxins in cereals. In Mycotoxins and Food Safety; DeVries, J. W., Trucksess, M. W., Jackson, L. S, Eds.; Kluwer Academic/Plenum Publishers: New York, USA, pp. 19 – 28.Paraschivu, M., Cotuna O., Paraschivu M., 2014. Integrated disease management of Fusarium head blight, a sustainable option for wheat growers worldwide, Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series, vol. XLIV, p. 183 - 187.Paul, P. A., Lipps, P. E., Madden, L. V., 2005. Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain: a meta-analysis. Phytopathology 95:1225 - 1236.Popescu G., 2005. Tratat de patologia plantelor, vol. II Agricultură, Editura Eurobit, 341 p..Snijders, C. H. A., Perkowski, J., 1990. Effects of head blight caused by Fusarium culmorum on toxin content and weight of wheat kernels. Phytopathology, 80, 566 – 570.Sobrova, P., Adam, V., Vasatkova, A., Beklova, M., Zeman, L., Kizek, R., 2010. Deoxynivalenol and its toxicity. Interdisc. Toxicol., 3, 94 – 99.Schroeder, H. W., Christensen, J. J., 1963. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53 7, 1: 831 - 838.Unger, P. W., 1994. Residue production and uses–an introduction to managing agricultural residues. In Managing Agricultural Residues; Unger, P. W., Ed., Lewis Publishers: Boca Raton, F. L., USA, pp. 1 – 6.Zhang, W., Boyle K., Brûlé - Babel, A. L., Fedak, G., Gao, P., Robleh Djama, Z., Polley, B., Cuthbert R. D., Randhawa, H. S., Jiang, F., Eudes, F., Fobert, P. R., 2020. Genetic Characterization of Multiple Components Contributing to Fusarium Head Blight Resistance of FL62R1, a Canadian Bread Wheat Developed Using Systemic Breeding. Front. Plant Sci. 11:580833.Zrcková, M., Svobodová - Leišová, L., Bucur, D., Capouchova, I., Konvalina, P., Pazderu, K., Janovská D., 2019. Occurence of Fusarium spp. In hulls and grains of different wheat species, Romanian Agricultural Research, No. 36, 173 - 185.Watkins, J. E., Boosalis, M. G., 1994. Plant disease incidence as influenced by conservation tillage systems. In Managing Agricultural Residues; Unger, P. W., Ed. Lewis Publishers: Boca Raton, F. L., USA, 261 – 283.Wegulo, S. N., 2012. Factors influencing Deoxynivalenol accumulation in small grain cereals, Toxins, 4, 1157 - 1180.Wang, Y. Z. and Miller, J. D., 1988. Screening techniques and sources of resistance to fusarium head blight. In: A. R., Khlatt, (ed), Wheat production: constraints in tropical environments. CIMMYT, Mexico. 239 - 250.***. 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.***. 2013. Commission Recommendation 2013/165/EU of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products.***. 2024. REGULAMENTUL (UE) 2024/1022 AL COMISIEI din 8 aprilie 2024 de modificare a Regulamentului (UE) 2023/915 în ceea ce privește nivelurile maxime de deoxinivalenol în produse alimentare, Jurnalul Oficial al Uniunii Europene, 9.4.2024, ELI: http://data.europa.eu/eli/reg/2024/1022/oj.
Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor
Foto: Otilia Cotuna (realizate în anii trecuți)
Abonamente Revista Fermierului – ediția print, AICI!
În cadrul Campaniei 2024, termenul limită de depunere a Cererilor de Plată este data de 7 iunie a.c., inclusiv, reamintește Ministerul Agriculturii și Dezvoltării Rurale (MADR). Față de campaniile precedente, în Campania 2024 nu există perioadă de depunere cu penalități.
După data limită de depunere a cererii de plată (7 iunie 2024), fermierii trebuie să notifice în scris Agenția de Plăți și Intervenție pentru Agricultură (APIA) cu privire la orice modificare a datelor declarate în cererea de plată şi în documentele doveditoare, în termen de 15 zile de la data modificării.
Dacă cererea de plată cuprinde şi intervenții din sectorul zootehnic, solicitantul se va adresa întâi responsabilului APIA în vederea completării declaraţiei privind sectorul zootehnic și ulterior va completa cererea pentru suprafaţă prin intermediul aplicației IPA-Online din versiunea internet.
Fermierii care nu desfăşoară activitate agricolă nu sunt eligibili la plată pentru suprafeţele/animalele neconforme.
Fermierii și alți beneficiari care primesc plăți directe sau plăți anuale prin intervenții sub formă de plăți directe și intervenții pentru dezvoltare rurală, finanțate din fonduri europene trebuie să respecte normele privind condiționalitatea pe întreaga exploatație agricolă (inclusiv pe cele neeligibile şi pe cele care nu mai sunt folosite în scopul producţiei) și pe tot parcursul anului de cerere.
Abonamente Revista Fermierului – ediția print, AICI!
Începând cu data de 9 mai 2024, Agenția de Plăți și Intervenție pentru Agricultură (APIA) eliberează adeverințe pentru beneficiarii unor măsuri și intervenții, respectiv pentru: Sprijin de bază pentru venit în scopul sustenabilității (BISS), Sprijin redistributiv complementar pentru venit în scopul sustenabilității (CRISS), Măsura 10 – Agro-mediu şi climă, Măsura 11 – Agricultură ecologică, DR-01 – Agro-mediu și climă pe pajiști permanente, DR-02 – Agro-mediu și climă pe terenuri arabile, DR-04 – Agricultură ecologică – conversie, DR-05 – Agricultură ecologică – menținerea certificării, DR-09 – Zone afectate de constrângeri naturale – Zona Montană (ANC_ZM), DR – 10 – zone afectate de constrângeri naturale semnificative și DR-11 – Zone afectate de constrângeri naturale specifice.
La solicitarea scrisă a fermierului, APIA eliberează o adeverință prin care confirmă că acesta a depus Cererea de plată pentru anul 2024, solicitând finanțare pentru măsurile și intervențiile indicate mai sus. Valoarea creditului poate fi de până la 90% din valoarea sumei calculate conform adeverinței eliberate de APIA.
Prin adeverință se confirmă, la data emiterii acesteia, suprafața determinată la plată pentru intervențiile și măsurile care fac obiectul convenției încheiate cu instituțiile bancare și nebancare, că s-a efectuat controlul administrativ sau datele au fost preluate din informațiile existente în cererea închisă în aplicația IPA online și înregistrată în IACS, după caz, asupra cererii de plată a beneficiarului referitor la eligibilitatea pentru intervențiile și măsurile implementate de APIA prevăzute în Convenție.
Totodată, adeverința eliberată certifică faptul că beneficiarul nu face obiectul excluderilor de la plată și că îndeplinește condițiile generale pentru acordarea sumelor cuvenite, în conformitate cu legislația în vigoare.
Fondul de Garantare a Creditului Rural IFN – SA (FGCR) şi Fondul Naţional de Garantare a Creditului pentru Întreprinderi Mici şi Mijlocii IFN – SA (FNGCIMM) garantează creditele acordate de bănci fermierilor.
Potrivit Ordinului Ministrului Agriculturii și Dezvoltării Rurale nr. 50/2017 de modificare a Ordinului Ministrului Agriculturii și Dezvoltării Rurale nr.703/2013 pentru aprobarea condițiilor în care se vor încheia convențiile dintre instituțiile financiar-bancare și nebancare și APIA, în vederea finanțării de către acestea a activităților curente ale beneficiarilor plăților derulate de instituția noastră în baza adeverințelor eliberate, dobânda aferentă acordării creditelor va fi de RON-ROBOR 6M + maxim 2%.
În ceea ce privește comisioanele practicate de instituțiile finanțatoare, APIA atrage atenția fermierilor care doresc să acceseze credite pentru finanțarea capitalului de lucru în vederea desfășurării activităților curente, să analizeze cu atenție sporită soluțiile de finanțare propuse de instituțiile financiar-bancare și nebancare în ceea ce privește costul acestora, astfel încât să aleagă modalitățile de finanțare care răspund cel mai bine necesităților proprii.
Fermierii pot solicita eliberarea adeverințelor prin transmiterea unei cereri prin mijloace electronice către Centrele APIA.
Abonamente Revista Fermierului – ediția print, AICI!
Silviana Petre-Badea este noul director general al Cramei SERVE, cel mai vechi și unul dintre cei mai cunoscuți producători de vin din Dealu Mare, de la Ceptura – județul Prahova. După o experiență îndelungată în real estate, Silviana Petre-Badea a preluat responsabilitatea conducerii SERVE de la mama sa, Mihaela Tyrel de Poix, co-fondator al primei crame private din România. Astfel, la trei decenii de la înființare, la Crama SERVE se face tranziția către noua generație.
Silviana Petre-Badea a condus JLL Romania timp de opt ani, iar în prezent a rămas membru non executiv în Boardul CEE al iO Partners. „Fac tranziția la o industrie complet nouă, cu o piață extrem de competitivă și cu concurenți pentru care am un mare respect. Cei 20 de ani în domeniul consultanței m-au pregătit pentru multe și mai știu că, indiferent de domeniu sau de produs, ingredientele sunt aceleași: grija față de oameni și locul lor în ecosistemul în care funcționează, focus pe rezultat, inovație și excelență în fiecare detaliu și cât mai multă bucurie în fiecare zi și în fiecare proiect. Avem deja o echipă minunată în cramă și vie, cu o medie a retenției de peste 20 de ani, și am creat o echipă de vânzări și marketing de care putem fi mândri”, a declarat Silviana Petre-Badea.
Crama SERVE, situată în regiunea viticolă Dealu Mare, din județul Prahova, are o capacitate de producție de 500.000 de sticle de vin anual, iar în 2023 a înregistrat o cifră de afaceri de două milioane de euro, în creștere față de anul anterior.
Silviana Petre-Badea este absolventă a Academiei de Studii Economice și are o experiență de 20 de ani în consultanță real estate, dintre care ultimii zece ani în top management. De la cârma afacerii familiei, ea va promova excelența în interiorul companiei, va face noi recrutări și va crea sisteme moderne, care să permită scalarea business-ului începând din 2025.
Mihaela Tyrel de Poix, mama Silvianei, îi va sta alături, rămânând implicată în afacere și va acompania tranziția. De asemenea, alături de noul director general de la Crama SERVE va fi și fratele Paul Badea. La rândul său, acesta din urmă a preluat poziția de Non Executive Partner, din care va gestiona relația cu anumiți clienți și parteneri strategici și va participa la creionarea strategiei pe termen lung a companiei.
Mihaela Tyrel de Poix
„Ne propunem ca în cinci ani să devenim cel mai admirat business de vinuri din România, nu doar pentru vinurile, istoria și povestea noastră, dar și pentru valoarea pe care o aducem partenerilor cu care lucrăm - angajați, furnizori și clienți, mediului de afaceri, industriei de vinuri și societății în general. Vrem ca SERVE să rămână o companie pentru care oamenii să își dorească să lucreze și cu care partenerii să dorească să facă business. Avem forța să stăm alături de alți producători cu aceleași valori și viziune în a poziționa vinul ca brand de țară pentru România”, a mai spus Silviana Petre-Badea.
Compania explorează în prezent oportunități atât în zona de producție, cât și în cea de marketing și vânzări, respectiv cultura și vinul BIO, sustenabilitate și ESG în viticultură, inovație în packaging pentru reducerea amprentei de carbon, demistificarea vinului pentru consumatori și oenoturism.
Pe lângă tranziția către noua generație, Crama SERVE marchează anul acesta și 30 de ani de existență. În 1994, contele francez Guy Tyrel de Poix împreună cu Mihaela de Poix puneau bazele uneia dintre celei mai mari afaceri viticole, înființând prima firmă privată de vinuri din România.
Vinurile SERVE au obținut peste 250 de medalii începând cu anul 1996, când Merlot Chevalier de Dionys 1995 lua medalie de bronz la competiția Selections Mondiales din Canada. Totodată, Guy si Mihaela de Poix au readus soiul Fetească neagră în atenția viticultorilor și a iubitorilor de vinuri, iar SERVE este autorul primului vin Fetească neagră notat cu peste 90 puncte Parker.
**********
Despre Crama SERVECrama SERVE - Societatea Euro-Română pentru Vinuri de Excepție - este cel mai vechi și unul dintre cei mai cunoscuți producători de vin din Dealu Mare, regiune renumită pentru condițiile climatice ideale pentru cultivarea strugurilor roșii.Crama SERVE deține și exploatează 65 de hectare de viță-de-vie în zona Ceptura, având o producție anuală de circa 500.000 de sticle de vin și o cifră de afaceri de circa două milioane de euro. Printre brandurile de vin produse se numără „Vinul Cavalerului”, „Terra Romana” și gama „Cuvee”.Crama este în special cunoscută pentru produsele premium Cuvee Charlotte, Cuvee Guy de POIX, Cuvee Clemence, Cuvee Amaury, Cuvee Sissi și Cuvee Pacs, precum și pentru asocierea de soiuri autohtone precum Fetească neagră sau Fetească albă cu soiuri internaționale, în asamblaje excepționale.Pe lângă producția de vin, Crama SERVE oferă clienților și experiențe de descoperire a lumii vinului, precum degustări de recunoaștere de soiuri, degustări verticale (vinuri din recolte din ani diferiți), experiențe de blending și experiențe legate de activitățile din vie. Foto: https://www.serve.ro/Abonamente Revista Fermierului – ediția print, AICI!
Maria Cîrjă, Marketing Manager pentru România și Republica Moldova la Corteva Agriscience, a fost onorată cu premiul „Cel mai bun Manager de Marketing din România” la Gala de Excelență în Management organizată de revista Capital.
Evenimentul este dedicat recunoașterii realizărilor managerilor din companiile care activează pe piața românească și care conduc proiecte de succes în toate departamentele relevante, cum ar fi marketingul, vânzările, resursele umane și multe altele. Criteriile de evaluare au fost performanța managerilor, deciziile și acțiunile relevante pentru categoria la care s-au calificat.
„Este o onoare pentru mine să primesc acest premiu prestigios și sunt profund recunoscătoare pentru recunoașterea realizărilor și eforturilor făcute în cadrul Corteva Agriscience pentru promovarea inovației și sustenabilității în agricultură. La un eveniment care a devenit deja o tradiție în lumea afacerilor din România, Gala de Excelență, sunt mândră să mulțumesc echipei Corteva România pentru angajamentul ei și pentru realizarea acestui succes remarcabil. Contribuția noastră la industria agricolă din România este susținută de o viziune și o pasiune comune, iar acest premiu demonstrează o colaborare excelentă în cadrul industriei cu obiectivul de a asigura fermierilor tehnologia necesară pentru a aborda eficient și eficace provocările din câmp”, a declarat Maria Cîrjă.
Cu aproape 25 de ani de experiență, Maria Cîrjă este expertă în domeniul agricol, deținând un doctorat în studii de protecție a culturilor. A absolvit în 1993 și și-a început cariera la Institutul de Cercetare în Legumicultură și Floricultură Vidra, lângă București. După trei ani de activitate academică, și-a continuat călătoria în cadrul unei companii agricole multinaționale ca director tehnic și de dezvoltare, deținând această poziție timp de zece ani. S-a alăturat DuPont Pioneer, una dintre companiile fondatoare a Corteva Agriscience, în 2007 ca manager de produs, și patru ani mai târziu a fost numită director de marketing pentru România și Republica Moldova.
La Corteva, Maria Cîrjă susține excelența companiei în industria agricolă românească și este un promotor al practicilor agricole durabile prin furnizarea de soluții tehnologice performante și genetici avansate. În acest context, poziția de lider al Corteva pe piață este consolidată de rezultatele înregistrate în 2023 pe diverse segmente. De exemplu, conform Kynetec, liderul global în date, analize și informații în agricultură, în categoria semințelor, Corteva ocupă prima poziție pentru porumb, soia și rapiță. Mai mult, în protecția culturilor, compania își menține conducerea cu prima poziție pe piață în erbicide pentru cereale și rapiță, erbicide post-emergente pentru porumb și fungicide pentru viță de vie și cartof. Performanța pe piață a companiei subliniază angajamentul său neclintit față de excelență și inovație, pledând pentru utilizarea semințelor de calitate și a produselor de protecția culturilor pentru a maximiza productivitatea și a îmbunătăți randamentele pentru fermieri.
Abonamente Revista Fermierului – ediția print, AICI!