rapita - REVISTA FERMIERULUI

Pe 17 noiembrie 2022, Guvernul a aprobat o ordonanță de urgență pentru instituirea unei scheme de ajutor de stat sub formă de grant financiar acordat producătorilor agricoli care au înființat culturi în toamna anului 2021 ce au fost afectate de seceta pedologică.

Astfel, se compensează parțial pierderile înregistrate de fermierii afectați de seceta pedologică accentuată manifestată în aproape toate regiunile agricole ale țării, pentru suprafețele agricole cultivate în toamna anului 2021. Resursele financiare necesare implementării schemei sunt de 365,6 milioane lei și se asigură de la bugetul Ministerului Agriculturii și Dezvoltării Rurale pe anul 2022.

În urma centralizării făcute de Centrul Operativ pentru Situații de Urgență din cadrul MADR a informațiilor cuprinse în procesele-verbale de constatare și evaluare a pagubelor la culturi, a reieșit un număr de peste 16.000 de fermieri care au fost afectați de seceta pedologică și circa 250.000 ha de culturi înființate în toamna anului 2021 care au fost calamitate în grade diferite de afectare cuprinse între 30% și 100% pe areale agricole importante la nivel național

Compensațiile acordate ca ajutor de stat sub formă de grant financiar unitar pe hectar pentru fiecare cultură afectată reprezintă maximum 40% din cheltuielile eligibile, respectiv maximum 40% din cheltuielile tehnologice prevăzute în tehnologiile cadru la culturi din recolta 2021-2022, realizate de Institutul de Cercetare pentru Economia Agriculturii şi Dezvoltare Rurală (ICEADR).

Grantul financiar unitar este în cuantum maxim de 1.500 lei/ha aferent unui grad de afectare de 100% care este prevăzut în procesul - verbal de constatare și evaluare a pagubelor. Dacă gradul de afectare prevăzut în procesul-verbal de constatare și evaluare a pagubelor este cuprins în intervalul 30% până la 100%, cuanumul grantului financiar unitar care se poate acorda se diminuează procentual corespunzător și se obține prin înmulțirea cuantumului maxim cu procentul de afectare prevăzut în procesul-verbal.

Pentru evaluarea pagubelor provocate s-a solicitat Administrației Naționale de Meteorologie, precum și Academiei de Științe Agricole și Silvice „Gheorghe Ionescu-Şişeşti” realizarea de analize a influenței indicilor climatici asupra evoluției culturilor în condițiile secetei pedologice manifestată pe areale agricole extinse în anul 2022, transmite MADR.

 

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Știri
Duminică, 23 Octombrie 2022 14:44

Molia verzei, prezentă în culturile de rapiță

În urma controlului fitosanitar efectuat în săptămâna 17 – 23 octombrie 2022 în culturile de rapiță de pe teritoriul Stațiunii de Cercetare – Dezvoltare Agricolă (SCDA) Lovrin am constatat prezența larvelor și adulților de Plutella xylostella în număr mare, aspect care ne îngrijorează. Chiar dacă acest dăunător este considerat secundar la rapiță, în anii favorabili poate produce daune semnificative.

rapita roasa

Pe lângă larvele și fluturii de Plutella, pe rapiță se hrănesc masiv și larvele de Helicoverpa armigera. Afidele sunt prezente și ele în toate stadiile de dezvoltare. Fluturii de Helicoverpa armigera, Plutella xylostella, Pieris brassicae și Autographa gamma încă zboară prin culturi. Toamna blândă cu temperaturi ridicate în timpul zilei permite acestor dăunători să se dezvolte în condiții bune.

Helicoverpa armigera pe rapiță, 20 octombrie 2022

Helicoverpa armigera pe rapiță la 20 octombrie 2022

Autographa gamma, 20 octombrie 2022

Autographa gamma la data de 20 octombrie 2022

Plutella xylostella (molia verzei) este considerată un dăunător important al cruciferelor cultivate, mai ales la varză, conopidă, rapiță, muștar etc. Se cunoaște că managementul actual al moliei Plutella xylostella (și nu numai) se bazează în mare măsură pe tratamentele chimice. În cele ce urmează readuc în atenția dumneavoastră aspecte legate de biologia și combaterea integrată a moliei mai sus amintite pentru a vă ajuta în gestionarea ei în următoarea perioadă de timp. Pentru un control mai bun și mai durabil pe termen lung, managementul acestui dăunător trebuie îmbunătățit, în așa fel încât combaterea să nu se bazeze strict pe aplicarea insecticidelor (mai ales la varză, conopidă).

Molia Plutella xylostella (L.) (Lepidoptera: Plutellidae), este unul dintre cei mai serioși dăunători ai Brassicaceaelor cultivate la nivel mondial [Talekar & Shelton, 1993; Sarfraz et al., 2006]. În țara noastră este răspândită în zonele unde se cultivă varză, conopidă, rapiță [Roșca et al., 2011].

Adult de molia verzei care zboară prin culturile de rapiță, 20 octombrie 2022

Adult de molia verzei care zboară prin culturile de rapiță la data de 20 octombrie 2022

 

Aspecte generale despre biologia și ecologia moliei Plutella xylostella

 

În condițiile climatice ale țării noastre prezintă trei generații de an. Insecta poate ajunge chiar la șase generații pe an în zonele din lume unde climatul permite dezvoltarea. În lunile mai - iulie se dezvoltă prima generație, în iulie - august a doua generație, iar generația a treia din august până anul următor [Roșca et al., 2011]. Insecta iernează în stadiul de pupă în cocon pe frunzele atacate. În anul următor, primii adulți vor apărea spre sfârșitul lunii mai.

Ciclul de viață are patru etape sau stadii: adult, ou, larvă, pupă. Durata fiecărui stadiu este condiționată de condițiile climatice (temperatura mai ales). Adulții sunt mici (cam 9 mm lungime) și au culoare predominant maro - cenușiu către ocru. Aripile au culoare variabilă de la ocru la maro, cu pete negre. Când sunt pliate, în partea superioară formează trei sau patru zone în formă de diamant de culoare alb - cenușiu. Din acest motiv i se mai spune „molia diamantată” [Talekar et Shelton, 1993; Golizadeh et al., 2007; Sarnthoy et al., 1989; CABI, 2015]. Adulții au activitate maximă la amurg și în timpul nopții. Dacă intrăm într-un lan de rapiță și atingem plantele, vom observa zborul în zig - zag al adulților.

Larvă de Plutella și rosăturile produse pe frunze de rapiță

Larvă de Plutella și rosăturile produse pe frunze de rapiță

Imediat după apariția adulților, începe împerecherea. La câteva ore după împerechere, femelele încep depunerea pontei. O femelă poate depune 80 - 100 ouă. După unii autori, pot depune până la 200 de ouă pe parcursul a zece zile. Aproximativ 95% din femele încep să depună ouă la câteva ore după împerechere. Ouăle sunt ovale, au culoare gălbuie și aproximativ 0,5 mm. De regulă, sunt depuse mai ales pe partea inferioară a frunzelor (lângă nervuri de obicei) și mai puțin pe cea superioară. În acest fel, ele sunt protejate de lumina directă, de vânt, de ploi [Silva și Furlong, 2012; Talekar și Shelton, 1993; Åsman et al., 2001].

După 3 - 5 zile de incubație (funcție de temperaturi) apar larvele care încep să se hrănească, fiind recunoscute pentru lăcomia lor. În primul stadiu, au un mod de hrănire minier, consumând parenchimul frunzelor. După două - trei zile încep să se hrănească pe partea inferioară a frunzelor, rozând epiderma inferioară și parenchimul, cu excepția epidermei superioare (ferestruire). În următoarele trei stadii, larvele devin foarte lacome consumând frunzișul non - stop, lăsând găuri ovale de diferite dimensiuni în frunze iar aspectul de ferestruire dispare [Talekar și Shelton, 1993; Roșca et al., 2011; Castelo Branco et al., 1997]. Ajunse în stadiul patru, larvele nu mai consumă frunze și intră în stadiul prepupal. Acest stadiu durează între 1 - 3 zile, atunci când temperaturile sunt cuprinse între 10 - 20 grade C. Perioada pupală durează și ea între 3 și 20 de zile, funcție de planta gazdă și temperaturi (10 - 30 grade C). Suma de temperaturi necesară dezvoltării unui ciclu de viață este de aproximativ 260 grade C. Ciclul de viață al unei generații se poate întinde pe 60 - 80 de zile funcție de condițiile de temperatură ale zonei, pornind de la pragul de 7 grade C și o temperatură medie de 10 grade C. Dacă temperaturile sunt mai ridicate, numărul de zile necesare dezvoltării se reduce la jumătate [Golizadeh et al., 2007; CABI, 2015; Liu et al., 2002].

Larvă de Plutella xylostella care se hrănește pe rapiță, 20 octombrie 2022

Larvă de Plutella xylostella care se hrănește pe rapiță la data de 20 octombrie 2022

În zonele foarte calde din lume, această insectă are un ciclu de viață scurt, în jur de 18 zile, iar populația sa poate crește de până la 60 de ori de la o generație la alta [De Bortoli et al., 2011]. Studiile indică că moliile pot rămâne în zbor continuu câteva zile, putând zbura până la 1000 km/zi. Nu se cunoaște încă cum reușesc moliile să supraviețuiască la temperaturi scăzute și la altitudine mare [Talekar & Shelton, 1993].

 

Cum și când combatem acest dăunător

 

Este foarte important să monitorizăm insecta. Pentru asta, cercetarea pe teren este necesară. Capcanele cu feromoni pot fi utilizate pentru monitorizarea moliei și stabilirea curbelor de zbor. Curbele de zbor pot fi un bun indicator pentru alegerea momentului optim de combatere. Studiile efectuate în India arată că monitorizarea populațiilor de Plutela xylostella cu ajutorul capcanelor feromonale au dat rezultate foarte bune în combatere. Datele obținute au putut indica un moment optim de aplicare al tratamentelor, în așa fel încât populațiile au fost drastic diminuate și daunele reduse. Pe lângă asta, numărul de tratamente a fost și el redus [Venkata et al., 2001].

În același timp, câmpurile ar trebui verificate de cel puțin două ori pe săptămână. Controlul trebuie să se facă în mai multe puncte din lan sau cultură (cel puțin cinci). Se vor verifica în fiecare punct măcar 0,1 m2. Pe această suprafață se vor număra larvele.

Funcție de planta gazdă, fenologie, există mai multe praguri de dăunare calculate. După Tanskii (1981), la varză, PED-ul este de 8 - 10 larve/plantă. Momentele de observație: rozeta de frunze, începutul formării căpățânii. După „Canola Encyclopedia” (2015), pragul economic de dăunare la care trebuie efectuat tratamentul este de 20 - 30 larve/m2.

Ferestruiri produse de Plutella xylostella

Ferestruiri produse de Plutella xylostella

Combaterea moliei Plutella xylostella se poate face printr-o serie de măsuri, agrofitotehnice, chimice și biologice. Dintre măsurile agrofitotehnice, amintesc: distrugerea buruienilor (a cruciferelor spontane mai ales), arăturile adânci pentru îngroparea resturilor vegetale, irigarea prin aspersiune (stresează adulții, larvele cad de pe frunze), cultivarea soiurilor tolerante [Roșca et al., 2011]. Există zone în lume unde se practică intercroping-ul (cu usturoi, salată verde) și înființarea de culturi capcană pe marginea culturilor [Shelton, Badenes-Perez, 2006].

 

Măsuri chimice de combatere

 

Din păcate, în cadrul sistemului de combatere integrată, măsurile chimice ocupă un loc fruntaș. În primul stadiu, larvele nu pot fi omorâte datorită modului minier de hrănire. Din stadiul doi ele pot fi combătute chimic.

La varză, pentru combaterea moliei Plutella xylostella sunt omologate în România câteva insecticide: ciantraniliprol, clorantraniliprol, cipermetrin, gama – cihalotrin, emamectin benzoat, spinosad, clorantraniliprol + lambda-cihalotrin. Pentru rapiță nu sunt omologate produse, dar cele omologate pentru alți dăunători omoară și populațiile de Plutella [după aplicația Pesticide 2.22.10.1, 2022].

Dintre pesticidele recomandate, grupul chimic al piretroizilor este cel mai important și mai utilizat pentru controlul moliei P. xylostella. Controlul chimic al P. xylostella se recomandă atunci când densitatea larvelor depășește pragul economic, care variază în raport cu stadiul de creștere al culturii și condițiile de mediu [Micic, 2005; Miles, 2002]. Utilizarea de multe ori incorectă a acestor substanțe chimice a crescut rezistența moliei verzei [Carazo et al., 1999; Castelo Branco et al., 2001]. Multe studii arată că populațiile de P. xylostella sunt considerate foarte predispuse la dezvoltarea rezistenței la insecticide. De altfel, P. xylostella a fost primul dăunător raportat a fi rezistent la dicloro-difenil-triclor-etan (DDT), la numai 3 ani de la începutul utilizării sale [Ankersmit, 1953]. Mai târziu a dezvoltat rezistență semnificativă la aproape orice insecticid aplicat, inclusiv la substanțe chimice noi [Sarfraz & Keddie, 2005; Ridland & Endesby, 2011].

Gestionarea populației de P. xylostella folosind metode de control chimice poate fi o strategie foarte interesantă dacă este bine utilizată, din cauza numărului mare de grupe chimice cu substanțe active diferite, care permit alternarea substanțelor chimice, prevenind astfel apariția fenomenului de rezistență. De asemenea, se recomandă ca tratamentele chimice să fie alternate și cu alte metode de control (biologice de exemplu) pentru a reduce numărul de aplicații de pesticide și pentru a îmbunătăți astfel calitatea produsului vegetal.

311864241 650067176618172 1399326978960078603 n

Un aspect foarte important în alegerea produsului chimic este selectivitatea acestuia, deoarece multe substanțe chimice au o selectivitate ridicată pentru gazdă, dar nu și pentru agenții de control biologic, care contribuie la menținerea populațiilor considerate benefice pentru managementul integrat al P. Xylostella.

 

Combaterea biologică, de interes în viitor

 

În combaterea biologică a P. xylostella pot fi utilizate preparate pe bază de Bacillus thuringiensis subsp. Kurstaki (tulpina PB 34). Managementul integrat al P. xylostella bazat pe controlul biologic cu bacteria entomopatogenă B. thuringiensis este o metodă importantă pentru reducerea densității populației acestui dăunător în culturile de Brassicaceae. Cu toate acestea, utilizarea acestui entomopatogen trebuie să fie bine planificată, deoarece această molie se află printre primele insecte care au dezvoltat rezistență la insecticidul biologic pe bază de Bacillus thuringiensis [Kirsch & Schmutlerer, 1988; Tabashnik, 1990].

De interes sunt și fungii entomopatogeni Metarhizium anisopliae și Beauveria bassiana pentru controlul P. xylostella. Beauveria bassiana este disponibilă ca produs pe piață pentru gestionarea insectelor dăunătoare. Utilizată în combaterea moliei verzei, a redus cu succes populațiile și s-a constatat că se răspândește eficient de la moliile contaminate la cele sănătoase [Sarfraz et al., 2005].

În mod natural, toate stadiile moliei Plutella xylostella sunt atacate de numeroși parazitoizi și prădători, parazitoizii fiind cei mai studiați. Peste 90 de specii parazitoide atacă molia diamantată [Goodwin, 1979]. Paraziții de ouă aparținând genurilor polifage Trichogramma contribuie puțin la controlul natural, necesitând eliberări frecvente de viespi în câmp. Paraziții de larve sunt cei mai predominanți și în același timp cei mai eficienți. De exemplu, în Brazilia au fost observate șapte specii de parazitoizi într-o populație de P. xylostella la culturile de varză, cele mai frecvente fiind două specii: Diadegma liontiniae (Brethes) (Hymenoptera: Ichneumonidae) și Apanteles piceotrichosus (Blanchard) (Hymenoptera: Braconidae). Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae) și Actia sp., mai numeroase în trecut, au devenit parazitoizi minori.

Parazitoizii din genul Trichogramma se numără printre agenții entomofagi care au fost mult studiați pentru P. xylostella. Specia T. pretiosum Riley (Hymenoptera: Trichogrammatidae), tulpina Tp8, poate parazita aproximativ 15 ouă de P. xylostella în prima sau a doua generație atunci când sunt crescute în această gazdă în condiții de laborator, cu apariție de 100% și 10 până la 11 zile pentru apariția adulților [Volpe et al., 2006]. Mai mult, modalitatea optimă de a crește în masă acest parasitoid în laborator este de a folosi ouă lipite pe cartoane de culoare albastră, verde sau albă [Magalhaes et al., 2012].

Dintre prădătorii moliei Plutella xylostella, de interes este P. nigrispinus, care are un potențial mare de utilizare în controlul acesteia. P. nigrispinus a fost raportat că se hrănește cu P. xylostella în culturile de crucifere, consumând în medie 11 larve sau 5 - 6 pupe în 24 de ore [Silva - Torres et al., 2010; Vacari et al., 2012]. Despre adulții de Orius insidiosus (Say) (Hemiptera: Anthocoridae) există date care arată că aceștia pot consuma în jur de 6 ouă de Plutella xylostella în 24 de ore [Brito et al., 2009].

Numeroase studii se fac astăzi despre utilizarea nematozilor entomopatogeni în combaterea moliei verzei Plutella xylostella. Cercetările efectuate până acum arată că nematozii Steinernema carpocapsae pot fi utilizați în combatere mai ales atunci când insecticidele se dovedesc ineficiente [Schroer et al., 2005]. Pentru că molia depune ouăle pe suprafața inferioară a frunzelor iar larvele tinere se hrănesc în aceeași zonă, soluția cu nematozi trebuie direcționată cât se poate de mult acolo. Eficacitatea tratamentului depinde foarte mult de tehnica de pulverizare [Brusselman et al., 2012].

Insecticidele de origine vegetală sunt, de asemenea, un grup foarte important pentru gestionarea populației acestui dăunător. Dintre acestea, extractul de neem (Azadirachta indica) a prezentat rezultate semnificative în controlul P. xylostella [Myron et al., 2012].

Metodele amintite în acest material, utilizate corect și conștient, îmbinate armonios, pot duce la obținerea unor produse vegetale de o bună calitate, lipsite de reziduuri de pesticide.

311761819 650065986618291 8897681481655123811 n

 

Bibliografie

Ankersmit G. W., 1953, DDT resistance in Plutella maculipennis (Curt.) Lepidoptera in Java. Bulletin of Entomological Research 1953;44: 421–425.
Åsman K., Ekbom B., Rämert B., 2001, Effect of Intercropping on Oviposition and Emigration Behavior of the Leek Moth (Lepidoptera: Acrolepiidae) and the Diamondback Moth (Lepidoptera: Plutellidae). Environmental. Entomology 30(2): 288-294.
Brito J. P., Vacari A. M., Thuler R. T., De Bortoli S. A., 2009, Aspectos biológicos de Orius insidiosus (Say, 1832) predando ovos de Plutella xylostella (L., 1758) e Anagasta kuehniella (Zeller, 1879). Arquivos do Instituto Biológico 2009; 76(4): 627–633.
Brusselman E., Beck B., Pollet S., Temmerman F., Spanoghe P., Moens M., Nuyttens D., 2012, Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables. Pest Management Science 2012;68(3): 444–453.
Carazo E. R., Cartin V. M. L. , Monge A. V., Lobo J. A. S., Araya L. R., 1999, Resistencia de Plutella xylostella a deltametrina, metamidofós y cartap em Costa Rica. Manejo Integrado de Plagas 1999; 53: 52–57.
Castelo Branco M., França F. H., Medeiros M. A., Leal J. G. T., 2001, Uso de inseticidas para o controle da traça-do-tomateiro e da traça-das-crucíferas: um estudo de caso. Horticultura Brasileira 2001; 19(1): 60–63.
Castelo Branco M., França F. H., Villas Boas G. L., 1997, Traça-das-crucíferas (Plutella xylostella). Brasília: Embrapa Hortaliças; 1997. 4p.
CABI. 2015. Plutella xylostella. CABI.org, Invasive Species Compendium. [http://www.cabi.org/isc/datasheet/42318].
Canola Encyclopedia. Diamondback Moth. Canola Council of Canada, n.d.: [http://www.canolacouncil.org/can.../insects/diamondbackmoth/].
De Bortoli S. A., Vacari A. M., Goulart R. M., Santos R. F., Volpe H. X. L., Ferraudo A. S., 2011, Capacidade reprodutiva e preferência da traça-das-crucíferas para diferentes brassicáceas. Horticultura Brasileira 2011; 29(2): 187–192.
Gurr G. M., Wratten S. D., 2000, Measures of success in biological control. Dordrecht: Kluwer Academic Publishers; 2000, p 430.
Golizadeh A., Karim K., Yaghoub F., Habib A., 2007, Temperature-dependent Development of Diamondback Moth, Plutella Xylostella (Lepidoptera: Plutellidae) on Two Brassicaceous Host Plants. Insect Science 14.4: 309-16.
Goodwin S., 1979, Changes in the numbers in the parasitoid complex associated with the diamondback moth, Plutella xylostella (L.) (Lepidoptera) in Victoria. Australian Journal of Zoology 1979; 27(6): 981–989.
Henegar Monika et al., 2019 - Codexul produselor de protecție a plantelor omologate pentru utilizare în România, Editura Agroprint, Timișoara, 426 p.
Kirsch K., Schmutlerer H., 1988, Low efficacy of a Bacillus thuringiensis (Berl.) formulation in controlling the diamondback moth Plutella xylostella (L.), in the Philippines. Journal of Applied Entomology 1988;105(1-5): 249–255.
Liu S.-S., Chen F.-Z., Zalucki M. P., 2002, Development and survival of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), at constant and alternating temperatures. Environmental Entomology 31: 1-12.
Magalhães G. O., Goulart R. M., Vacari A. M., De Bortoli S. A., 2012, Parasitismo de Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) em diferentes hospedeiros e cores de cartelas. Arquivos do Instituto Biológico 2012; 79(1): 55–90.
Myron P. Zalucki, Asad Shabbir, Rehan Silva, David Adamson, Liu ShuSheng, and Michael J. Furlong, 2012, Estimating the Economic Cost of One of the World's Major Insect Pests, Plutella xylostella (Lepidoptera: Plutellidae): Just How Long is a Piece of String?, Journal of Economic Entomology, 105(4):1115-1129.
Miles M., 2002, Insect Pest Management II – Etiella, False Wireworm and Diamondback Moth. GRDC Research updates. http://www.grdc.com.au, 2002.
Micic S., 2005, Chemical Control of Insect and Allied Pests of Canola. Farmnote No. 1/2005. Department of Agriculture, South Perth, Western Australia, Australia; 2005.
Ridland P. M., Endersby N. M., 2011, Some Australian populations of diamondback moth, Plutella xylostella (L.) show reduced susceptibility to fipronil. In: Srinivasan R., Shelton A. M., Collins H. L. (eds.) Sixth international workshop on management of the diamondback moth and other crucifer insect pests. Nakhon Pathom, Thailand; 2011. P 21–25.
Roşca I., Oltean I., Mitrea I., Tãlmaciu M., Petanec D. I., Bunescu H. Ş., Rada I., Tãlmaciu N., Stan C., Micu L. M., 2011 - Tratat de Entomologie generală şi specială, Editura “Alpha MDN”, Buzău, p. 279 - 296;
Sarfraz M., Dosdall L. M., Keddie B. A., 2006, Diamondback moth-host plant interactions: implications for pest management. Crop Protection 2006; 25(7): 625–639.
Sarfraz M., Keddie B. A., 2005, Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lepidoptera: Plutellidae). Journal of Applied Entomology 2005; 129(3): 149–157.
Silva - Torres C. S. A., Pontes I. V. A. F., Torres J. B., Barros R., 2010, New records of natural enemies of Plutella xylostella (L.) (Lepidoptera: Plutellidae) in Pernambuco, Brazil. Neotropical Entomology 2010; 39(5): 835–838.
Shelton A. M., Badenes-Perez E. 2006, Concepts and applications of trap cropping in pest management. Annual Review of Entomology 51: 285–308.
Schroer S., Sulistyanto D., Ehlers R. U., 2005, Control of Plutella xylostella using polymer-fomulated Steinernema carpocapsae and Bacillus thuringiensis in cabbage fields. Journal of Applied Entomology 2005; 129(4): 198–204.
Talekar N. S., Shelton A. M., 1993, Biology, ecology, and management of the diamondback moth. Annual Review of Entomology 1993; 38(1): 275–301.
Tabashnik B. E., Cushing N. L., Finson N., Johnson M. W., 1990, Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 1990; 83(5): 1671–1676.
Vacari A. M., De Bortoli S. A., Torres J. B., 2012, Relation between predation by Podisus nigrispinus and developmental phase and density of its prey, Plutella xylostella. Entomologia Experimentalis et Applicata 2012; 145(1): 30–37.
van Lenteren J., Godfray H. C. J., 2005, Europen in science in the Enlightenment and the discovery of the insect parasitoid life cycle in The Netherlands and Great Britain. Biological Control 2005; 32(1): 12–24.
van Lenteren, J., 2012, The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 2012; 57(1): 1–20.
Venkata G., Reddy P., Guerrero A., 2001, Optimum Timing of Insecticide Applications against Diamondback MothPlutella Xylostella in Cole Crops Using Threshold Catches in Sex Pheromone Traps. Pest Management Science 57.1: 90-94.
Volpe H. X. L., De Bortoli A. S., Thuler R. T., Viana C. L. T. P., Goulart R. M., 2006,  Avaliação de características biológicas de Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) criado em três hospedeiros. Arquivos do Instituto Biológico 2006; 73(3): 311–315.
Waage J. K., Greathead D. J., 1988, Biological Control: challenges and opportunities. Philosophical Transactions of the Royal Society of London 1988; 318 (1189): 111–128.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef Laborator Bioinginerii Vegetale SCDA Lovrin, șef lucrări Facultatea de Agricultură - USV „Regele Mihai I” Timișoara

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

Deși este o cultură profitabilă și o bună premergătoare pentru cerealele de toamnă, rapița este și o cultură „sensibilă” la condițiile climatice din toamnă. Bolile și dăunătorii constituie un alt grup de factori de risc care amenință rapița, față de care trebuie acordată o atenție deosebită.

În portofoliul companiei Corteva Agriscience există o soluție completă pentru controlul celor mai importanți dăunători ai culturii de rapiță, insecticidul INAZUMA®.

Insecticidul Inazuma este compus din două substantațe active: acetamiprid cu acțiune sistemică ce pătrunde rapid în plantă și este protejată de spălare, oferind astfel protecție de lungă durată împotriva insectelor cu aparat bucal de înțepat și supt; cât și lambda cihalotrin-piretroid cu spectru larg de combatere, efect șoc și activitate reziduală.

Ambele componente fac ca insecticidul Inazuma să ofere siguranța atât de mult dorită de cultivatorii de rapiță.

Când vine vorba de controlul dăunatorilor din cultura de rapiță, precum Gândacul lucios al rapiţei (Meligethes aeneus), Gărgăriţa tulpinilor (Ceuthorhynchus spp.), Afide (Aphis spp.), Viespea rapiţei (Athalia rosae) și Puricele rapiţei (Psylliodes chrysocephala), Inazuma este solutia perfectă, fiind singura opțiune gata formulată la ora actuală care are o acțiune și sistemică și de contact.

Insecticidul INAZUMA® poate fi aplicat la rapiță, cu o cadență de 14 zile între tratamente și doze adaptate de 0,125-0,2kg/ha pentru Afide, Viespea rapiței și Puricele rapiței. Pentru Gărgărița tulpinilor și Gândacul lucios al rapiței dozele de aplicare sunt cuprinse între 0,15-0,2kg/ha funcție de presiunea de atac.

Se recomandă ca tratamentul de primăvară, împotriva Gândacului lucios al rapiţei (Meligethes aeneus), Gărgăriţa tulpinilor (Ceuthorhynchus spp.), Afide (Aphis spp.), să fie făcut în perioada de instalare a dăunătorilor în cultură, în baza urmăririi atente a numărului de pupe dar nu mai târziu de stadiul fenologic: buton verde BBCH 51.

Atenție: Nu se aplică în perioada înfloritului!!!

Articol scris de: ADRIAN IONESCU, Category Marketing Manager Fungicides & Insecticides Corteva Agriscience România & Moldova

Macheta Inazuma A4

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

În culturile de rapiță răsărite din zona Lovrin și nu numai, viespea rapiței zboară, se împerechează și depune ouă. Primele larve pot fi observate în culturi. Pe lângă acest dăunător periculos al rapiței, aduc în atenția dumneavoastră și alți dăunători ce pot produce pagube importante și sunt prezenți la această dată în culturi. Este vorba despre larvele de Plutella xylostella (molia verzei), Helicoverpa armigera (omida fructificațiilor), Pieris brassicae (fluturele alb al verzei), Phyllotreta sp. (purici), Brevicoryne brassicae (afide), Trialeurodes vaporariorum (musculița albă).

Toamna caldă încă permite dezvoltarea acestor dăunători. Verificați cu atenție culturile și interveniți dacă densitatea dăunătorilor este mare, iar plantele de rapiță sunt în primele stadii de dezvoltare.

Atrag atenția asupra Helicoverpei armigera deoarece există o încărcătură mare de ouă în culturile de rapiță pe care eu le-am verificat. În acest an, temperaturile foarte ridicate și vremea secetoasă au permis dezvoltarea a trei generații complete și este posibil ca cea de-a patra generație să zboare în această perioadă. Spun asta deoarece în această săptămână s-a înregistrat zbor masiv de fluturi la capcanele Csalomon de la SCDA Lovrin.

306833625 615050200119870 2103450773033676579 n

Chiar dacă monitorizarea în cadrul programului ARC farm intelligence (în colaborare cu compania FMC România) s-a încheiat la sfârșitul lunii august, la Lovrin continuăm monitorizarea zborului dăunătorului Helicoverpa armigera până la finalul zborului (luna octombrie). La data de 12 septembrie 2022 la una dintre capcane au fost capturați 602 fluturi, iar la celelalte trei capcane între 158 și 200 fluturi. Zborul maxim înregistrat se corelează cu activitatea de hrănire, împerechere, depunere ouă, eclozare larve pe care eu le-am observat. Adulții se hrănesc acum prin ierburile de la marginea culturilor, livezilor, lizierelor. La această dată pot fi observate ouăle depuse pe frunzele plantelor de rapiță.

Deși rapița nu se numără printre gazdele preferate ale Helicoverpei, făcând parte din categoria gazdelor minore, ei bine, dacă nu are alternative de hrană, femela va depune ouăle și pe rapiță. În acest moment, larvele de Helicoverpa sunt mai active prin culturile de rapiță decât alți dăunători specifici. Puteți observa toate stadiile, de la ou, larve în diferite stadii de dezvoltare și adulți.

306768040 615049156786641 7670723750097469124 n

 

Viespea rapiței (Athalia rosae)

 

În cele ce urmează, readuc în atenția fermierilor interesați informații cu privire la biologia, ecologia și combaterea viespei rapiței (pesticide actualizate).

Viespea rapiței este o specie oligofagă. Atacă crucifere cultivate, dar și spontane. Pe lângă cruciferele cultivate, dăunătorul se hrănește și cu specii sălbatice de crucifere și umbelifere (Raphanus raphanistrum L., Carum carvi L., Conium maculatum L. etc). Insecta este răspândită în Europa, Asia, America de Nord, Africa.

306945479 615050570119833 5060290541966773985 n

Viespea Athalia rosae este atrasă de plantele din familia Cruciferae datorită substanțelor pe care acestea le conțin (izotiocianați și glucozinolați). Ridichile sunt preferate, dar și alte crucifere ca rapița, muștarul, cresonul, varza etc.

Larvele de Athalia rosae rețin compușii secundari ai plantelor, și anume glucozinolații, în hemolimfa lor. Când sunt atacate, tegumentul lor se rupe relativ ușor și exudă o picătură de hemolimfă („sângerare ușoară”). Aceasta s-a dovedit a fi o apărare eficientă, pe bază de substanțe chimice, împotriva prădătorilor [Boevé J. L. & Schaffner U., 2003; Vlieger L. et al., 2004].

 

Biologia și ecologia dăunătorului

 

În România dăunătorul prezintă două generații pe an. Iernarea are loc sub formă de larvă în cocon în sol la adâncimea de 7 - 15 cm. Primăvara în luna aprilie are loc împuparea. Viespile adulte din prima generație încep să zboare în luna mai - începutul lunii iunie. Corpul adulților are culoare portocalie strălucitoare, excepție făcând capul și părțile laterale. Lungimea corpului poate fi cuprinsă între 5 - 8 mm, după unii autori 9 mm. Aripile sunt galbene la bază și negricioase la marginea frontală și la jumătatea exterioară. Abdomenul este gros, ascuțit la femelă, rotunjit la mascul.

După o perioadă de hrănire pe plante din familia Brassicaceae și Apiaceae, adulții se împerechează și începe depunerea ouălor. O femelă poate depune între 200 - 300 de ouă, fiecare într-o cavitate mică tăiată pe marginea frunzei unei plante gazdă. Zona unde a fost depus un ou poate fi recunoscută ușor deoarece țesutul este deformat. Ouăle sunt mari, ovale, transparente, cu aspect sticlos. Perioada embrionară poate dura între 5 - 12 zile funcție de condițiile de climă, cel mai adesea 6 - 8 zile [Mike Lole, 2010].

Larvele tinere se hrănesc în interiorul frunzei la început, apoi extern pe partea inferioară. În cele din urmă, din frunze rămâne doar scheletul. Corpul larvelor are aspect ridat, culoare închisă sau verde - cenușie și este acoperit cu mici veruci. Larvele au capul mic, negru și 11 perechi de picioare. Partea abdominală este mai deschisă, iar partea dorsală prezintă dungi întunecate. La completa dezvoltare pot ajunge la dimensiuni cuprinse între 18 - 25 mm. Dezvoltarea larvelor poate dura 10 - 13 zile la temperaturi peste 20 grade C [Amiridze N., 1973]. Funcție de condițiile climatice, cel mai adesea, stadiul larvar poate dura între 20 și 50 de zile. În perioada iunie - iulie, larvele ajunse la completa dezvoltare se retrag în sol și își țes coconii unde se vor împupa ulterior. În lunile iulie - august apar adulții primei generații și ciclul se reia [Roșca I. et al., 2011]. În luna septembrie sunt predispuse la atacul culturilor de rapiță răsărite unde adulții vor depune ouă. Larvele generației de toamnă pot produce pagube importante culturilor de rapiță, dar și celor de varză de toamnă.

306804985 615048090120081 7827221482474305734 n

 

Daune produse

 

Larvele proaspăt eclozate au un mod de hrănire minier. După câteva zile consumă epiderma inferioară și mezofilul frunzelor. În urma atacului pot fi observate orificii în frunze (în cazul larvelor mici), iar mai târziu rămân doar nervurile principale. La atacuri masive tinerele plăntuțe se pot usca. Dăunătorul poate consuma florile și silicvele în formare. Generația de toamnă poate produce pagube importante culturilor de rapiță semănate devreme. Plantele răsărite pot fi devorate complet de către larve [Mike Lole, 2010; Roșca I. et al., 2011] .

 

Cum putem monitoriza acest dăunător?

 

Cea mai sigură metodă este observarea directă a zborului adulților. Viespile adulte se hrănesc cu nectar sau cu polen. Pentru a observa din timp prezența viespilor, pot fi folosite capcanele galbene lipicioase. Acestea trebuie amplasate în zona plantelor gazdă. Zborul adulților are loc atunci când temperaturile zilnice sunt de 18 - 19 grade C. Cele mai favorabile sunt temperaturile de 23 - 26 grade C [Amiridze N., 1973].

Este bine ca monitorizarea să înceapă în luna mai și să continue până în luna septembrie. Scopul monitorizării trebuie să fie stabilirea momentului de activitate intensă a adulților. Dacă constatăm zbor masiv este bine să ne îngrijorăm și să verificăm prezența larvelor pe frunze. Plantele gazdă crucifere pot fi utilizate pentru monitorizarea larvelor. De cele mai multe ori, până când vedem larvele, deja frunzele pot fi scheletuite [Mike Lole, 2010].

306832355 615051100119780 8554931504169650839 n

 

Cum putem ține sub control dăunătorul

 

Măsuri de prevenție

Amplasarea noilor culturi de rapiță mai departe de cele vechi este un aspect important. La această măsură se adaugă: distrugerea buruienilor gazdă, respectarea rotației (cu păioase sau rădăcinoase), efectuarea arăturii imediat după recoltarea rapiței, fertilizarea echilibrată, distrugerea resturilor vegetale, înființarea de culturi capcană.

Măsuri chimice de control

De regulă tratamentele trebuie efectuate la un PED de peste 2 larve/plantă [Roșca et al., 2011].

Tratarea semințelor de rapiță și muștar este foarte importantă. Aceste tratamente conferă 6 - 8 săptămâni de protecție pentru dăunători. Din păcate nu se întâmplă așa.

În combaterea chimică trebuie utilizate insecticide omologate pentru rapiță.

Pentru tratamentele la sămânță în România este omologat insecticidul ciantraniliprol. În vegetație pot fi utilizate: deltametrin, cipermetrin, acetamiprid + lambda - cihalotrin, lambda - cihalotrinul, ciantraniliprol, tau - fluvalinatul, acetamiprid, etofenprox, gama - cihalotrin [după PESTICIDE 2.22.9.1, 2022].

306979467 615053183452905 1578019869315408117 n

Măsuri biologice

În combaterea biologică poate fi utilizat Spinosad. Spinosad este un pesticid obținut prin fermentare din bacterii naturale (Saccharopolyspora spinosa). Este foarte eficient la doze mici. Acționează prin ingestie și contact asupra insectelor dăunătoare. Impactul asupra entomofaunei utile este mic comparativ cu alte produse biologice. În comparație cu alte produse biologice asigură un control mai rapid. Controlul prin contact este extrem de eficient, dar prin ingestie, eficacitatea crește de 5 - 10 ori.

Produsele pe bază de Bacillus thuringiensis (B.t.), controlează larvele de lepidoptere foarte bine, dar nu și pe cele de viespe.

 

Bibliografie

Amiridze N., 1973 - Some experimental data to ecology of turnip sawfly. In: Kanchaveli L.A., ed. The proceedings of Georgian Plant Protection Institute, vol. 24. Tbilisi: Georgian NIIZR. 105 - 107 p. (in Russian)
Boevé J. L. & Schaffner U., 2003 - Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134, 104 – 111.
Mike Lole, 2010 - Turnip sawfly: biology and control, Factsheet 11/10, Field Vegetables Project FV 317.
Roşca I., Oltean I., Mitrea I., Tãlmaciu M., Petanec D. I., Bunescu H. Ş., Rada I., Tãlmaciu N., Stan C., Micu L. M., 2011 - Tratat de Entomologie generală şi specială, Editura “Alpha MDN”, Buzău, p. 279 - 296;
Vlieger L., P. M. Brakefield and C. Müller, 2004 - Effectiveness of the defence mechanism of the turnip sawfly, Athalia rosae (Hymenoptera: Tenthredinidae), against predation by lizards, Bulletin of Entomological Research (2004) 94, 283–289, DOI: 10.1079/BER2004299.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef Laborator Bioinginerii Vegetale SCDA Lovrin, șef lucrări Facultatea de Agricultură - USV „Regele Mihai I” Timișoara

 Foto: Otilia Cotuna

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

Cultura de rapiță este una dintre cele mai profitabile culturi atunci când condițiile de creștere și dezvoltare sunt optime, sau cu alte cuvinte, într-un an agricol bun. Este prima cultură care aduce bani în fermele din România.

Deși este o cultură rentabilă, rapița este în același timp și riscantă. Pentru a evita eventualele probleme, culturii de rapiță îi trebuie acordată o atenție deosebită din partea cultivatorilor. Este o cultură care necesită, încă din toamnă, tratamente fitosanitare atât pentru combaterea dăunătorilor și bolilor, cât și pentru combaterea buruienilor.

Gradul de îmburuienare al acestei culturi poate fi foarte mare, atât cu buruieni monocotiledonate, cât mai ales cu buruieni dicotiledonate, buruieni care concurează plantele de cultură în detrimentul acestora.

 

Fără buruieni, producții ridicate și de foarte bună calitate

 

Cea mai utilizată soluție în toamnă pentru combaterea buruienilor dicotiledonate din cultura de rapiță este reprezentată de erbicidul Galera™ Super al companiei Corteva Agriscience.

Galera™ Super este un erbicid foarte bine cunoscut, care are în compoziție trei substanțe active cu două moduri de acțiune diferite, atât sistemic, cât și de contact (240 g/l clopiralid + 80 g/l picloram + 40 g/l aminopiralid). Este cea mai sigură metodă de a combate buruienile dicotiledonate, atât anuale, cât și perene, din cultura de rapiță.

Galera™ Super este cea mai eficientă soluție în combaterea turiței (Galium aparine), buruiană care reprezintă cea mai mare provocare atât în perioada de vegetație a culturii, concurând planta, cât și la recoltarea și valorificarea producției. Galera™ Super are o eficacitate foarte mare (>90%) în combaterea pălămidei (Cirsium arvense), mușețelului (Matricaria spp.), samulastrei de floarea soarelui, lobodei (Chenopodium album), macului (Papaver rhoeas), susaiului (Sonchus arvensis), cornuților (Xanthium strumarium) și altor buruieni dicotiledonate prezente în cultură.

Galera™ Super este prima alegere a fermierilor din România pentru controlul buruienilor dicotiledonate din cultura de rapiță datorită unor avantaje, precum: eficacitate ridicată, independentă de umiditatea din sol la aplicare, are flexibilitate în aplicare, putându-se aplica toamna sau primăvara, este selectiv pentru planta de cultură și are cel mai mare spectru de buruieni dicotiledonate combătute.

 

Articol scris de: ALEXANDRA PETCUCI, Category Marketing Manager Herbicides Corteva Agriscience România și Moldova

Publicat în Protecția plantelor

Comerțul cu cereale în România este deținut de marii traderi cunoscuți în toată lumea. Cine face prețul cerealelor la Marea Neagră, ce anume face ca prețul să crească sau să scadă? Întrebări firești pe care ni le punem de fiecare dată când apar turbulențe pe piața cerealelor. O piață foarte volatilă și sensibilă la orice ingerință, fie ea politică sau militară. Așa se face că, vrem nu vrem, musai trebuie să sărim în ajutorul celor aflați la restriște.

Vremurile nu sunt deloc binevoitoare cu fermierii români, în condițiile în care prețurile la inputuri au luat-o efectiv razna. Bine, puteți spune că a crescut și prețul produselor agricole. Corect! Dar în niciun caz de trei-patru ori ca la inputuri. În tot acest timp, aglomerația din portul Constanța a dus, inevitabil, la scăderea prețului produselor care se recoltează chiar acum, rapița și grâul, chiar și cu 50 de bani/kg.

Și mai punem faptul că prețurile la energie și combustibili NU vor da înapoi. În țara noastră, regula e doar să crească?! În tot acest timp, vecinii noștri din Uniunea Europeană NU numai că au scăzut prețul, dar l-au și înghețat la nivelul anului trecut (vezi Ungaria și Bulgaria).

La cereale, însă, acestea repede se duc în jos, ba că portul este ocupat cu exportul altor cereale, ba că infrastructura existentă de depozitare sau transport este insuficientă... și mai scade prețul puțin. Și uite așa orice calcul și-ar fi făcut fermierul român, există toate „șansele” ca nici măcar cheltuielile să nu poată fi acoperite în ritmul acesta. Al cui este interesul pentru ca fermierul român să nu-și poată acoperi cheltuielile? Al cui este interesul ca prin portul Constanța cerealele românești să nu mai poată fi comercializate?

Știe cineva câte zile face un tren de marfă de la Timișoara la Constanța? Dar de la Craiova sau Oradea? Niciun ministru trecut pe la Transporturi, după ‘89, nu a fost interesat ca infrastructura feroviară să fie modernizată (la cea rutieră au fost investiții ineficiente și insuficiente), să crească viteza de deplasare a trenurilor pentru persoane sau de marfă, nu să scadă în așa hal încât să ajungem de rușinea Europei.

Și ca să exemplificăm, un tren cu marfă, pe căile noastre ferate, aproximativ 1.000 km, să zicem de la Caransebeș în portul Constanța, descărcat cereale și retur, face 20 de zile, în timp ce, la vecinii bulgari, pentru distanța Vidin – Burgas (600 km) și retur, adică 1.200 km, plus timp de descărcare în portul Burgas, este nevoie de 48 de ore. De zece ori mai puțin! Nu vi se pare că este prea mare diferența?

La bătaia asta de joc, se adaugă prețurile de transport mult mai mari, cu toată infrastructura proastă și timpul mult prea mare de transport pentru ca să nu-l considerăm imposibil, dar adevărat pentru Românica, în același timp fiind prea greu de explicat. Indiferența pentru investiții la standarde europene a celor care au trecut pe la cârma Transporturilor ne-a adus în situația de față.

A! Era să uit de cel mai ieftin mijloc de transport, cel pe Dunăre, cu barjele. Vremuri frumoase, apuse astăzi, tragi cu pușca și nu găsești nimic pe tot tronsonul românesc. Toate sunt la Galați ocupate cu marfa din Ucraina, cu preț de 10 ori mai mare/tona de marfă față de cel de anul trecut.

Ce facem în aceste condiții cu cerealele românești? Cum vor supraviețui producătorii români de cereale, în condițiile în care seceta și-a spus deja cuvântul, producțiile fiind mult mai mici față de previziunile din primăvară cu minimum 20 de procente, până la zone cu cel mult o tonă de grâu/ha?

Cui folosesc toate acestea? În niciun caz producătorilor români! 

 

Editorial scris de: ȘTEFAN RANCU, realizator Radio Antena Satelor

 
Publicat în Revista Fermierului, ediția print - iulie 2022
Abonamente, aici:https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html
Publicat în Editorial

Condițiile de climă și sol influențează creșterea și dezvoltarea culturilor, dar în aceeași măsură, crește și riscul apariției bolilor și dăunătorilor. La cultura de rapiță, Putregaiul alb (Sclerotinia sclerotiorum) este de departe cea mai pagubitoare boală. Primăverile calde și umede, densitatea ridicată, prezența în rotație a unor specii sensibile, sunt probleme des întâlnite în fermele de la noi din țară.

Corteva Agriscience introduce în cultura de rapiță, prin noua genetică, un concept inovator Sclerotinia Protector. PT303 este un hibrid unic pe piața din Europa ce combină un grad ridicat de toleranță la Sclerotinia cu productivitatea excelentă și caractere agronomice superioare, iar rezultatul este un produs ce nu poate lipsi din nicio fermă ce dorește performanță la cultura de rapiță.

O reală problemă o reprezintă rotația scurtă practicată în foarte multe ferme, unde rapița revine după un an de cereale păioase și în rotație scurtă cu floarea-soarelui, soia și mazărea. Faptul că scleroții produși de Slerotinia sclerotiorum pot rezista în sol 7-8 ani și în condiții prielnice pot produce pagube însemnate nu doar pentru cultura de rapiță, ci și pentru culturile ce vor veni în următorii ani pe acel teren, reprezintă o preocupare importantă a multor fermieri.

Combaterea chimică a acestei boli foarte păgubitoare este limitată și necesită atenție deosebită la momentul aplicării fungicidului, iar de cele mai multe ori nu se poate interveni la timp din cauza precipitațiilor, astfel că eficiența tratamentului este foarte redusă, infecția neputând fi eradicată în totalitate. Singura soluție reală este utilizarea hibrizilor Sclerotinia Protector.

Primul hibrid este PT303 ce va realiza producții constante anual, fără a fi impactat de acest agent patogen și care lasă un sol cu încărcătură mai mică de scleroți, unde vom putea cultiva în continuare fără riscuri culturile dorite.

Toleranța genetică este un aspect foarte important de luat în calcul în alegerea hibrizilor ce urmează să-i cultivăm. Alături de productivitate și stabilitate, ea asigură obținerea unor producții ridicate în anii problematici, când alte soluții nu dau randament.

De asemenea, un aspect foarte important de menționat este și pretabilitatea hibridului PT303 pentru agricultura organică/ecologică, fiind singura soluție de a reduce infestarea plantelor cu Sclerotinia și multiplicarea scleroților în viitor. Corteva oferă prin portofoliul actual, soluții reale fermierilor ce s-au integrat în agricultura organică.

Pentru siguranța culturii de rapiță, hibridul marca Pioneer® PT303 Sclerotinia Protector este alegerea perfectă.

  

Articol scris de: ANDREI CIOCOIU, Category Marketing Manager Seeds Corteva Agriscience România & Moldova

Publicat în Cultura mare

Pe 18 mai 2022, Universitatea din Craiova - Stațiunea de Cercetare și Dezvoltare Agricolă Caracal împreună cu Asociația Producătorilor de Porumb din România (APPR) organizează „Ziua Grâului și a Rapiței”.

Pentru înființarea platformei, 15 companii producătoare de sămânță au pus la dispoziție soiuri de grâu, orz și rapiță. Evenimentul va fi cu prezență fizică și va începe la ora 10.30, pe amplasamentul SCDA Caracal. Reprezentanții companiilor partenere a Zilei Grâului și Rapiței vor prezenta beneficiile fiecărui soi însămânțat în toamna anului 2021.

ziua grau rapita

Evenimentul este susținut de: Axereal, BASF, Bayer, Biocrop, Corteva Agriscience, Donau Saat, INCDA Fundulea, Kwizda, KWS, LG, Lidea, Mas Seeds, Rapool, Saaten Union, Soufflet și Syngenta.

Abonamente Revista Fermierului, ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Eveniment

La această dată, culturile de rapiță arată destul de bine, având în vedere contextul climatic actual. Timpul răcoros a ținut la distanță patogenii, iar activitatea dăunătorilor a fost și ea stânjenită. În prezent, temperaturile sunt mai ridicate în timpul zilei, iar dăunătorii sunt activi. Larvele de Ceutorhynchis napi și/sau C. palidactyllus sunt prezente în tulpinile de rapiță. Pe bobocii florali și pe flori sunt prezenți dăunătorii Melighetes aeneus (gândacul lucios al rapiței) și Ceutorhynchus assimilis (gărgărița semințelor de crucifere).

rapta galbena lovrin

În zona Lovrin am constatat o densitate destul de mare a gărgăriței semințelor (câte 3 - 4 pe un racem), mai ales pe marginile culturilor de rapiță, chiar dacă au fost efectuate tratamente. În această perioadă, gărgărițele se hrănesc și se împerechează masiv. Odată cu apariția primelor silicve va începe și depunerea ouălor. Monitorizați cu atenție culturile dumneavoastră și interveniți cu un tratament la momentul optim, în așa fel încât insectele să depună cât mai puține ouă.

Gărgărița semințelor de crucifere - Ceutorhynchus assimilis este un dăunător foarte important al rapiței, prezent în Europa în toate zonele unde se cultivă această plantă (Winfield, 1992; Cárcamo et al., 2009). Acest dăunător poate produce pagube în producție cuprinse între 15 - 35% (Buntin et al., 1999; Alford et al., 2003; Williams, 2004; Cook et al., 2006). După Dosdall et Cárcamo (2011), un atac masiv poate duce la pierderi în producție de până la 50%.

Dăunătorul poate fi observat în culturile de rapiță în timpul înfloritului (Ferguson et al., 2001; Williams, 2010).

Ceutorhynchus assimilis

Ceutorhynchus assimilis

 

Daune produse

 

Adulții de Ceutorhynchus assimilis se hrănesc cu mugurii florali, polen, nectar și cu țesuturile racemelor. În urma hrănirii, mugurii se vor usca. Dosdall et al. (2014) arată că, în urma hrănirii florile avortează. În consecință, se vor forma mai puține păstăi. Pe lângă asta, orificiile produse de adulți se pot constitui în porți de intrare pentru diferiți patogeni (Dosdall et al., 2001).

Larvele se hrănesc cu semințele din silicve, putând distruge una sau mai multe. Din cauza atacului, silicvele vor fi deformate și se vor deschide prematur (Dosdall et al., 2001). Temperaturile ridicate din timpul înfloritului favorizează activitatea acestui dăunător.

 

Aspecte generale despre biologia și ecologia gărgăriței semințelor

 

Dăunătorul are o singură generație pe an și iernează sub stratul de frunziș la marginea perdelelor forestiere și liziera pădurilor, în sol la 0,5 - 5 cm adâncime, în șanțurile de pe marginea drumurilor, unde este protejat de temperaturile scăzute (Brodeur et al., 2001; Roșca et al., 2011).

Primăvara, când temperatura solului este de 12 grade C, adulții ies de la iernat. Apariții masive se înregistrează când temperatura solului ajunge la 15 grade C (Ulmer et Dosdall, 2006; Roșca et al., 2011). Gărgărițele zboară când temperatura medie a aerului este de 12 grade C. La această temperatură, ele pot zbura la 1 metru înălțime iar pe măsură ce temperatura crește, crește și înălțimea de zbor. Dacă umiditatea atmosferică crește, scade și înălțimea de zbor și distanța de dispersie (Tansey et al., 2010a).

Adulții sunt mici (3 - 4 mm) au rostru proeminent, curbat și culoare cenușie - negricioasă. Când rapița începe să înflorească, adulții pot fi observați pe flori. Ei se hrănesc cu polen, nectar, muguri și cu țesuturi ale racemelor și se împerechează până când încep să se formeze primele silicve (Kozlowski et al., 1983).

gargarite

Femelele depun ponta în silicvele mici, abia formate (1 - 2 cm). Însă, majoritatea ouălor sunt depuse la sfârșitul înfloritului, când silicvele au dimensiuni cuprinse între 45 - 60 mm (Dosdall et Moisey, 2004). Înainte de a depune oul, femela roade un orificiu mic în silicvă și apoi depune un singur ou. După aceea, marchează zona cu feromoni pentru ca altă femelă să nu mai depună ponta (Ferguson et Williams, 1991). În întreaga viață, o femelă depune înte 35 - 50 ouă. Cercetările arată că, de obicei femela depune un singur ou într-o silicvă (Roșca et al., 2011). La infestări masive, pot fi observate și câte două și chiar mai multe ouă într-o silicvă (Cárcamo et al., 2001). Larvele au culoare albă imediat după eclozare, capul rotund și mai închis la culoare. Sunt apode și la maturitate au între 4 - 5 mm lungime (Roșca et al., 2011). La început se hrănesc în peretele silicvelor, după care trec pe semințe. După Dosdall et al. (2014), o singură larvă poate consuma 5 semințe până ajunge la maturitate. Roșca et al. (2011) arată că o larvă poate consuma între 3 și 9 semințe până ajunge la maturitate. La densități mari silicvele vor rămâne fără semințe. Ajunse la maturitate, larvele rod un orificiu în silicve și cad la sol unde începe împuparea. Această etapă durează aproximativ 10 - 14 zile, după care apar noii adulți (Cárcamo et al., 2001).

Ciclul de viață al acestui dăunător se desfășoară pe parcursul a aproximativ 8 săptămâni (de la ou la adult). Perioada se poate scurta sau lungi, funcție de condițiile climatice (Cárcamo et al., 2001).

Noii adulți se vor hrăni tot pe rapiță (dar și pe alte crucifere), rozând silicvele verzi și consumând resturile de semințe rămase în urma hrănirii larvelor și orice sămânță în curs de dezvoltare.

 

Cum controlăm dăunătorul?

 

În vederea combaterii dăunătorului la momentul optim, trebuie să se facă o monitorizare atentă a culturilor, mai ales pe margini. Aceste gărgărițe atacă cel mai frecvent marginile culturilor de rapiță, producând pagube. Dacă infestarea este masivă pot migra către mijlocul culturii uneori.

gargarita

Măsuri culturale

O bună strategie de management este utilizarea culturilor capcană. Pot fi semănați câte doi hibrizi, după cum urmează: la marginea câmpului poate fi semănat un hibrid extratimpuriu, iar restul câmpului cu un hibrid mai tardiv. Hibridul timpuriu va înflori înaintea culturii, iar gărgărițele pot fi capturate aici. Astfel, va fi tratată doar marginea culturii. Dacă se cultivă un singur hibrid, marginea poate fi semănată cu o săptămână mai devreme decât restul culturii. Această metodă poate fi aplicată cu succes mai ales la solele foarte mari. Scopul acestor strategii este de a opri înaintarea gărgărițelor către mijlocul culturii. De asemenea, se reduc costurile cu tratamentele iar entomofauna utilă va fi protejată (Buntin, 1998; Dosdall et Cárcamo, 2011).

Combaterea chimică

Funcție de zona de cultivare, în literatura de specialitate se recomandă mai multe praguri de dăunare de la care se pot executa tratamente fitosanitare. Pentru stabilirea densității dăunătorului, controalele trebuie efectuate de două ori pe săptămână la marginea culturilor în special, atunci când plantele sunt în fenofaza de 10 - 20% înflorire. Se execută câte 10 măturări cu fileul entomologic cu pânză mai groasă (canvas) în 10 puncte din câmp alese la întâmplare. Dacă sunt colectate mai mult de 20 de gărgărițe la 10 măturări, se vor lua măsuri de combatere (Canola Council of Canada, 2014). Dacă gărgărițele se află doar la marginea culturii, tratamentele vor fi aplicate doar în acele zone.

EPPO (1998), recomandă efectuarea unui tratament după formarea primelor silicve, când se înregistrează o densitate de 0,5 - 2 adulți/plantă la marginea câmpului (prag recomandat, în funcție de regiune acesta poate să fie ușor diferit). Pe de altă parte, densitatea trebuie stabilită atât la marginea culturii, cât și în interior. Nu este indicat să se facă tratamente la sfârșitul înfloritului (EPPO, 1998).

Tratamentele trebuie să vizeze omorârea adulților, înainte ca femelele să depună prea multe ouă (Canola Council of Canada, 2014).

În România, Roșca et al. (2011), recomandă începerea combaterii atunci când se înregistrează o gărgăriță/2 plante. Când este prezentă și Dasineura brassicae se poate reduce pragul la o plantă. Wise et Lamb (1998) recomandă un prag cuprins între 1 - 2 gărgărițe/plantă.

În țara noastră sunt omologate mai multe insecticide ce pot fi utilizate în combatere: lambda cyhalotrin, cipermetrin, etofenprox, cipermetrin + piperonil butoxid.

Atenție la albine!

Substanțele utilizate în combatere sunt foarte toxice pentru albine. Se recomandă avertizarea apicultorilor. Stupii ar trebui îndepărtați în timpul tratamentelor și 2 - 3 zile după aplicare. A se evita aplicarea directă pe stupi și în perioadele când albinele se hrănesc activ. Aplicați tratamentele dimineața sau seara.

Combaterea biologică

Aceste gărgărițe au dușmani naturali. Au fost identificate patru viespi parazite pe ouă și larve. Viespile parazite de ou fac parte din familia Mymaridae. Cele care parazitează larvele aparțin familiilor Pteromalidae și Braconidae. Dintre acestea, Trichomalus perfectus este răspândită în multe zone unde se cultivă rapiță (Europa, SUA, Canada) - Murchie et Williams, 1998; Dosdall et al., 2014. Trichomalus perfectus (Walker) este o viespe ectoparazit de larve, prezentă cu populații ridicate în culturile de rapiță din Europa, mai ales în cele netratate. Acest parazit are o singură generație și migrează în culturile de rapiță mai târziu decât gazda sa. Femela străpunge peretele silicvei cu ovipozitorul, imobilizează larva de C. assimilis și depune un singur ou pe suprafața corpului. Larva parazitoidă se hrănește extern cu gazda sa, fără a consuma capsula cefalică și pielea. În culturile netratate cu pesticide din Marea Britanie, procentul de parazitare a trecut de 50% (Murchie et al., 1997 b).

otilia rapita

Bibliografie

Alford D. V., Nilsson C., Ulber B., 2003 - Insects pests of oilseed rape crops, Bio control of oilseed rape pests. – UK, 355 p.
Brodeur, J., L.A. Leclerc, M. Fournier, and M. Roy., 2001 - Cabbage Seedpod Weevil (Coleoptera: Curculionidae): New Pest of Canola in Northeastern North America. The Canadian Entomologist 133(05): 709 – 711.
Buntin, G. D., 1998 - Cabbage Seedpod Weevil (Ceutorhynchus assimilis, Paykull) Management by Trap Cropping and its Effect on Parasitism by Trichomalus perfectus (Walker) in Oilseed Rape. Crop Protection 17(4): 299 – 305.
Buntin G. D., 1999 - Damage loss assessment and control of the cabbage seed pod weevil (Coleoptera: Curculionidae) in winter canola using insecticides, Journal of Economic Entomology, vol. 92, p. 220 – 227.
Canola Council of Canada, 2014 - Cabbage Seedpod Weevil. Canola Encyclopedia.
Cárcamo, H. A., L. M. Dosdall, M. Dolinski, O. Olfert, J. R. Byers, 2001 - The Cabbage Seedpod Weevil, Ceutorhynchus obstrictus (Coleoptera: Curculionidae) – A Review. Journal of the Entomological Society of British Columbia 98: 201 – 210.
Cárcamo H. A., Herle C. E., Otani J., McGinn S. M., 2009 - Cold hardiness and overwintering survival of the cabbage seedpod weevil, Ceutorhynchus obstrictus, Entomologia Experimentalis et Applicata, vol. 133, p. 223 – 231.
Cook S. M., Smart L. E., Martin J. L. et al., 2006 - Exploitation of host plant preferences in pest management strategies for oilseed rape (Brassica napus), Entomologia Experimentalis et Applicata, vol. 119, p. 221 – 229.
Dosdall, L. M., H. A. Cárcamo, 2011 - Biology and Integrated Management of the Cabbage Seedpod Weevil in Prairie Canola Crops. Prairie Soils and Crops eJournal 4: 14 – 23.
Dosdall, L. M., D. Moisey, H. Cárcamo, R. Dunn, 2001 - Cabbage Seedpod Weevil Factsheet. Alberta Agriculture, Food and Rural Development Agdex 622 – 21.
Dosdall, L. M., D. Moisey, H. Cárcamo, R. Dunn, 2014 - Cabbage Seedpod Weevil. Alberta Agriculture, Food and Rural Development Agdex (2001): 622 – 21.
Dosdall, L. M., D. W. A. Moisey, 2004 - Developmental biology of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Coleoptera: Curculionidae), in spring canola, Brassica napus, in western Canada. Ann. Entomol. Soc. Am. 97: 458 - 465.
Dosdall, L. M., D. Moisey, H. Cárcamo, R. Dunn, 2001 - Cabbage seedpod weevil fact sheet. Alberta Agriculture, Food and Rural Development Agdex 622 - 21, 4 pp.
EPPO Standard PP 2/8(1), 1998 - Guidelines on good plant protection practice - RAPE, 10 p.
Ferguson, A. W., I. H. Williams, 1991 - Deposition and longevity of oviposition - deterring pheromone in the cabbage seed weevil. Physiol. Ent. 16: 27 - 33.
Ferguson A. W., Klukowski Z., Walczak B. et al., 2000 - The spatial-temporal distribution of adult Ceutorhynchus assimilis in a crop of winter oilseed rape in relation to the distribution of their larvae and that of the parasitoid Trichomalus perfectus, Entomologia Experimentalis et Applicata, vol. 95, p. 161 – 171.
Kozlowski, M. W., S. Lux, J. Dmoch, 1983 - Oviposition behaviour and pod marking in the cabbage seed weevil, Ceutorhynchus assimilis. Entomol. Exp. Appl. 34: 277 – 282.
Murchie, A. K. & Williams, I. H., 1998 - A bibliography of the parasitoids of the cabbage seed weevil (Ceutorhynchus assimilis PAYK.). IOBC/WPRS Bulletin 21: 163 - 169.
Murchie, A. K., Williams, I. H. & Alford, D. V., 1997b - Effects of commercial insecticide treatments to winter oilseed rape on parasitism of Ceutorhynchus assimilis Paykull (Coleoptera: Curculionidae) by Trichomalus perfectus (Walker) (Hymenoptera: Pteromalidae). Crop Protection 16: 199 - 202.
Tansey, J. A., L. M. Dosdall, A. Keddie, O. Olfert, 2010a - Flight activity and dispersal of the cabbage seedpod weevil (Coleoptera: Curculionidae) are related to atmospheric conditions. Environ. Ent. 39: 1092 - 1100.
Wise, I. L., R. J. Lamb, 1998 - Sampling plant bugs, Lygus spp. (Heteroptera: Miridae), in canola to make control decisions. Can. Ent. 130: 837 – 851.
Williams I. H., 2004 - Advances in insect pest management of oilseed rape in Europe, Insect pest management: field and protected crops, Heidelberg, Germany, p. 181 – 208
Williams I. H., 2010 - Biocontrol-based integrated management of oilseed rape pests, London, New York, 500 p.

Articol scris de:  dr. ing. Otilia Cotuna, CSIII Laborator de Protecția plantelor SCDA Lovrin, șef lucrări USAMVB Timișoara

Foto: Otilia Cotuna

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

Deși este o cultură profitabilă și o bună premergătoare pentru cerealele de toamnă, rapița este și o cultură „sensibilă” la condițiile climatice din toamnă, drept pentru care mai este numită și regina culturilor de câmp. Pe lângă condițiile climatice din toamnă, bolile și dăunătorii constituie un alt grup de factori de risc care amenință această cultură, față de care trebuie acordată o atenție deosebită.

Compania Corteva Agriscience pune la dispoziția fermierilor soluția completă pentru controlul celor mai importanți dăunători ai acestei culturi, insecticidul Inazuma®.

Produsul Inazuma® este compus din două substanțe active:

- acetamiprid cu acțiune sistemică ce pătrunde rapid în plantă și este protejată de spălare, oferind astfel protecție de lungă durată împotriva insectelor cu aparat bucal de înțepat și supt;

- lambda cihalotrin- piretroid cu spectru larg de combatere, efect șoc și activitate reziduală.

Ambele componente fac ca insecticidul Inazuma® să ofere siguranța atât de mult dorită de cultivatorii de rapiță.

Când vine vorba de controlul dăunătorilor din cultura de rapiță, precum Gândacul lucios al rapiţei (Meligethes aeneus), Gărgăriţa tulpinilor (Ceuthorhynchus spp.), Afide (Aphis spp.), Viespea rapiţei (Athalia rosae) și Puricele rapiţei (Psylliodes chrysocephala), Inazuma® este soluția perfectă, fiind singura opțiune gata formulată la ora actuală ce are o acțiune și sistemică și de contact.

Insecticidul Inazuma® poate fi aplicat la rapiță, cu o cadență de 14 zile între tratamente și doze adaptate de 0,125-0,2 kg/ha pentru Afide, Viespea rapiței și Puricele rapiței. Pentru Gărgărița tulpinilor și Gândacul lucios al rapiței, dozele de aplicare sunt cuprinse între 0,15-0,2 kg/ha, în funcție de presiunea de atac.

Se recomandă ca tratamentul de primăvară, împotriva Gândacului lucios al rapiţei (Meligethes aeneus), Gărgăriţa tulpinilor (Ceuthorhynchus spp.), Afide (Aphis spp.), să fie făcut în perioada de instalare a dăunătorilor în cultură, în baza urmăririi atente a numărului de pupe, dar nu mai târziu de stadiul fenologic: buton verde BBCH 51.

Atenție: Nu se aplică în perioada înfloritului!!!

Articol scris de: ADRIAN IONESCU, Category Marketing Manager Fungicides & Insecticides Corteva Agriscience România & Moldova

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor
Pagina 1 din 11

newsletter rf

Publicitate

21C0027COMINB CaseIH Puma 185 240 StageV AD A4 FIN ro web 300x200

FMC banner site

banner.logo agroconcept

Banner Corteva 2020

GAL Danubius Ialomita Braila

GAL Napris

Revista