rotatia culturilor - REVISTA FERMIERULUI
Căutare - Categorii
Căutare - Contacte
Căutare - Conținut
Căutare - Fluxuri știri
Căutare - Etichete
Căutare - articole
Sâmbătă, 08 Martie 2025 23:26

Cum reducem pierderile de apă din sol

Prin asigurarea gradului de afânare al solului și prin celelalte măsuri luate, în funcție de zonă și de cantitatea de precipitații căzute în perioada de toamnă-iarnă, în sol s-a acumulat o anumită cantitate de apă. Esențial acum este modul cum se gestionează această apă.

Cantitatea maximă pentru apă într-un teren afânat este de 59%, iar în terenul tasat – compactat 38%.

Capacitatea de reținere a apei de către sol este condiționată de modul cum se va lucra până la sfârșitul perioadei de vegetație. Se va avea în vedere că în funcție de evoluția condițiilor climatice, începe însămânțarea unor culturi încă din luna februarie.

Căile prin care se poate consuma apa din sol sunt:

- Solul tasat-compactat, cu crustă, are capilaritatea până la suprafață prin care se ridică apa și se pierde prin evaporare;

- Solul prea afânat, bolovănos prin care circulă aerul și antrenează apa și din straturile adânci pe care o evaporă;

- Terenul denivelat expune o suprafață mare atmosferei și pierderile de apă prin evaporare sunt proporționale cu suprafața expusă;

-Terenul îmburuienat pierde apă deoarece buruienile consumă de 3-4 ori mai multă apă:

- O parte din apă se reduce prin consum productiv de către plantele de cultură, dar care și acesta poate fi raționalizat.

Măsurile de reducere a pierderilor de apă din sol constau în:

- Menținerea terenului perfect nivelat și fără crustă. Se știe că solul cu structură glomerulară nu formează crustă, ci un mulci natural deoarece în spațiile dintre glomerule se găsesc vapori de apă care blochează ridicarea apei și evaporarea ei din sol;

- Capilaritatea nu trebuie să ajungă până la suprafața solului. Solul bine structurat, prin uscarea glomerulelor de la suprafață, acestea își micșorează volumul, se desprind de glomerulele umede de mai jos, întrerup capilaritatea spre suprafață și deci, întrerup pierderile de apă prin evaporare;

- Printr-o fertilizare echilibrată, crește concentrația soluției solului reducând evaporarea apei la suprafața solului;

- Prezența diverselor paravane contra vântului formate din câte 2-3 rânduri de tulpini de porumb, sorg, floarea soarelui și mai ales a perdelelor forestiere de protecție, scad din viteza vântului care poate crește evaporația de 15-20 ori;

- Reducerea gradului de îmburuienare a culturilor agricole, acestea fiind mari consumatoare de apă din sol;

- Gradul de afânare a solului să fie realizat numai până la adâncimea de dezvoltare a sistemului radicular pentru a evita pierderile de apă spre pânza freatică;

- Terenul să se mențină bine și uniform acoperit de plante pentru a nu avea goluri în care cresc buruieni și pentru a menține o atmosferă fără deficit de saturație care reduce atât procesul de evaporare a apei, cât și transpirația plantelor;

- Este necesară și utilă lucrarea de prășit, cu un cultivator cu cuțite plate, reglat să lucreze la mică adâncime (2-3 cm) pentru a tăia rădăcinile buruienilor fără a răscoli solul și buruienile tăiate să rămână la suprafața solului, având rol de protecție. Totodată, sunt astupate crăpăturile prin care se pierde cu 18% mai multă apă;

- Trebuie alese specii de plante și din soiuri (hibrizi) cu perioadă de vegetație mai scurtă și cu consum de apă mai mic. Spre exemplu, consumul specific de apă la mei este 311, la sorg 322, la grâu 519, la in 905 etc.;

- Fertilizarea organică asigură cantități mai mari de apă reținută în sol deoarece materia organică are capacitatea de a reține cu 20% mai multă apă, iar humusul de 4-6 ori mai multă apă, putând întârzia cu două săptămâni apariția secetei;

- Asolamentul și rotația culturilor prin diversitatea plantelor cu sistemul radicular la diferite adâncimi, cu perioadă de vegetație diferită, cu consum variat de apă din diferite straturi, reușesc să gestioneze mai bine apa pe întreaga perioada de vegetație;

- Aplicarea agriculturii conservative, prin reducerea numărului de lucrări asupra solului, răscolind mai puțin pământul se reduc și pierderile de apă. Se apreciază că fiecare lucrare a solului provoacă pierderi de apă de 25%.

Prin urmare, există multiple posibilități la îndemâna agricultorilor ca apa acumulată în sol în perioada de toamnă-iarnă să fie valorificată, în cea mai mare parte, pentru creșterea nivelului și calității recoltelor.

 

Articol de: prof. dr. ing. VASILE POPESCU

Publicat în Revista Fermierului, ediția print – februarie 2025
Abonamente, AICI!

CITEȘTE ȘI: Nimic pentru primăvară

 

Reținerea zăpezii, sursă de apă și de protecție a culturilor

 

Condiționalitatea socială, mecanismul care condiționează plata subvențiilor

Publicat în Opinii

Monitorizarea a doi dăunători periculoși ai rapiței, gărgărițele tulpinilor, trebuie să înceapă devreme, atât în culturile noi, cât și în cele vechi de rapiță. Cele două specii de Ceutorhynchus (pallidactyllus și napi) au importanță economică deoarece pot distruge plantele prin reducerea creșterii lor, afectând în final producția de semințe.

472635579 122196022250088675 5653362063859699883 n

Prima decadă a lunii ianuarie 2025 a debutat cu temperaturi pozitive. În aceste zile, în unele zone din țară temperaturile au ajuns chiar și la 200C. În Banat se înregistrează maxime cuprinse între 15 - 180C. Este cunoscut că, în ferestrele calde din timpul iernii, gărgărițele tulpinilor de rapiță au tendința de a părăsi locurile de hibernare, păcălite uneori de temperaturile mai ridicate. De cele mai multe ori, după astfel de perioade calde urmează zile cu temperaturi mai scăzute. Contează câte zile consecutive sunt cu temperaturi mai ridicate. Când frigul intervine, adulții se vor retrage în sol, sub frunze etc. Dacă au apucat să se împerecheze și să depună ouă, acestea nu vor supraviețui.

Factorii climatici influențează foarte mult apariția și activitatea gărgărițelor în câmp (temperatura, umiditatea, precipitațiile). Dintre factorii amintiți, temperatura este cea mai importantă.

472492198 122196021950088675 1472216266181837039 n

Migrarea se desfășoară în următoarele condiții:

  • Ceutorhynchus pallidactylus migrează când temperatura solului trece de 60C și începe să zboare la 120

  • napi își începe zborul la 9 - 100C [Büchs, 1998; Juran et al., 2011). După Büchs (1998), adulții încep să iasă de la iernat atunci când temperatura solului la 5 cm este în jurul valorii de 6°C. În realitate, cei mai mulți autori arată că gărgărițele părăsesc locurile de iernare când temperatura din stratul superior al solului ajunge la 9 - 100C [Sekulič & Kereši 1998; Juran et al., 2011].

  • Dintre cele două specii, napi produce pagube mai mari [Šedivý & Kocourek, 1994]. Detectarea acestor gărgărițe poate fi extrem de dificilă, deoarece adulții stau de obicei la suprafața solului, sub bulgării de pământ [Gratwick, 1992].

 

Monitorizarea, cheia succesului în combatere

 

În cazul ambelor gărgărițe, monitorizarea corectă reprezintă cheia succesului. Ciclul de viață, modul ascuns de hrănire și apariția eșalonată a gărgărițelor creează mari probleme fermierilor. Din acest motiv, de multe ori, fermierii execută greșit tratamentele, fie că le fac prea devreme, fie că le fac prea târziu. Așadar, este important să controlăm adulții în momentele cheie, conform datelor obținute la capcane și a pragurilor economice de dăunare (PED). Larvele pătrunse în pețioli și tulpini nu mai pot fi controlate.

472789211 122196022796088675 705555623417692619 n

 

Când începem monitorizarea

 

Indiferent de condițiile climatice, monitorizarea noilor culturi de rapiță ar trebui să înceapă în mod obligatoriu din luna februarie.

În anul 2024, gărgărițele au început să migreze în luna februarie (în Banat). Nu pot spune încă dacă în acest an migrarea va începe mai devreme sau mai tarziu. Vom vedea cum evoluează vremea. Deoarece traversăm o perioadă caldă, din ianuarie 2025 putem amplasa capcane pentru monitorizarea apariției adulților în culturile noi. Este valabil și pentru culturile vechi. Fermierii ar trebuie să monitorizeze cu ajutorul capcanelor ambele zone pentru ca rezultatele să fie optime.

Indiferent de tipul de capcană, citirea lor trebuie făcută cu multă acuratețe la fiecare trei zile. Momentele din zi ideale pentru citirea capcanelor (recomandate de cercetători) sunt „înainte de amiază” sau „la amurg”.

472758054 122196022418088675 8975381608363382280 n

Zborul gărgărițelor poate fi monitorizat pentru stabilirea momentului optim de combatere cu mai multe tipuri de capcane:

  • Capcanele galbene cu apă (vase Moericke), clasice, sunt utilizate cel mai des pentru monitorizarea celor două gărgărițe. Din experiența acumulată de-a lungul timpului, apreciez că, cele mai bune rezultate se obțin cu aceste capcane.

  • Capcanele „Csalomon KLP+ trap” cu atractant. Aceste capcane sunt mai puțin cunoscute de către fermieri. Este indicat ca acestea să fie amplasate lângă vechea cultură de rapiță. Momeala din capcane atrage toate speciile de gărgărițe din genul Ceutorhynchus, dar există și momeli doar pentru pallidactylus. Alte specii pot intra în capcană doar accidental. La 3 - 4 săptămâni, producătorii recomandă schimbarea momelilor. Din păcate, monitorizarea realizată de mine cu acest tip de capcană pentru stabilirea momentului optim de combatere nu a dat rezultatele scontate (părere personală). Fermierii trebuie să știe că, acest tip de capcană este foarte eficient pentru detectarea timpurie la locurile de iernare. Dacă se înregistrează capturi în aceste zone, în una sau două zile gărgărițele vor migra în noile culturi de rapiță. Acest aspect este încurajat și de faptul că fermierii fac rotații scurte și nu respectă distanța dintre culturi. În consecință, migrarea se realizează foarte rapid. Capcanele cu momeli pot fi achiziționate de la Institutul de Protecția Plantelor din Budapesta [http://www.csalomontraps.com].

  • Capcane galbene cu adeziv. Acestea sunt cel mai des utilizate de către fermieri. Rezultatele obținute cu aceste capcane sunt bune, putând fi utilizate în stabilirea momentului optim de combatere.

  • Capcane galbene cu adeziv și momeală realizate la Institutul de Cercetări în Chimie „Raluca Ripan” Cluj-Napoca. Aceste capcane sunt în testare, iar fermierii le pot testa în mod gratuit (din câte știu eu). Anul trecut le-am testat pentru prima dată. Le voi testa și în acest. Rezultatele le voi face publice în cadrul materialelor informative.

472578179 122196022076088675 1684612003255552892 n

 

Aplicarea insecticidelor în ferestrele calde din iarnă poate avea avantaje și dezavantaje

 

Înainte de a efectua un tratament consultați prognoza. Dacă se anunță vreme rece după câteva zile calde, este bine să nu faceți tratamentul. De ce afirm asta? După Klukowski (2006), masculii și femelele de C. pallidactylus (specia apare mai devreme în culturi comparativ cu C. napi) părăsesc locurile de hibernare în momente distincte. Masculii apar primii, după care încep să apară și femelele. Faptul că femelele apar mai târziu limitează posibilitățile de copulare de la începutul migrației. Astfel, infestarea plantelor în această etapă este redusă [Büchs 1998]. Multe studii arată că femelele tind să apară în grupuri, mai ales la marginea culturilor [Perry et al. 1996; Klukowski, 2006].

Prin urmare, tratamentele din iarnă nu întotdeauna sunt rentabile, mai ales atunci când intervin perioade cu temperaturi scăzute care opresc activitatea adulților. În astfel de situații este bine să nu întrerupeți monitorizarea gărgărițelor, pentru a surprinde perioadele maxime de zbor.

472692102 122196022310088675 6072726634566230945 n

Bibliografie
Büchs W., 1998, Strategies to control the cabbage stem weevil (Ceutorhynchus pallidactylus) and the oilseed rape stem weevil (Ceutorhynchus napi) by a reduced input of insecticides. IOBC Bulletin, 21: 205–220.
Gratwick, M., 1992, Crop pests in the UK. Chapman and Hall Kirk, W. D. J., 1992, Insects on cabbages and Oilseed rape. Richmond Publishing.
Juran I., Gotlin Čuljak T., Grubišic D., 2011, Rape stem weevil (Ceutorhynchus napi Gyll. 1837) and cabbage stem weevil (Ceutorhynchus pallidactylus Marsh. 1802) (Coleoptera: Curculionidae) – important oilseed rape pests. Agriculturae Conspectus Scientificus, 76: 93 – 100.
Klukowski Z., 2006, Practical aspects of migration of stem weevils on winter oilseed rape. In: International Symposium on Integrated Pest Management in Oilseed Rape Proceedings, 3 – 5 April 2006, BCPC, Gottingen, Germany.
Perry J. N., 1996, Simulating spatial patterns of counts in agriculture and ecology. Computers and Electronics in Agriculture, 15: 93 – 109.
Šedivý J., Kocourek F., 1994, Flight activity of winter rape pests. Journal of Applied Entomology, 117: 400 – 407.
Sekulič R., Kereši T., 1998, O masovnoj pojavi stablovog kupusnog rikša – Ceutorhynchus pallidactylus Marsh. (Coleoptera, Curculionidae). Bijni lekar, 3, 239 – 244.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

 

Foto: Otilia Cotuna (fotografiile din acest material sunt făcute în anii 2024 și 2023, în perioada de amplasare a capcanelor)

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor

România s-a impus ca un jucător important în agricultura europeană, contribuind substanțial la producția regională de cereale. Creșterea productivității culturilor de cereale nu doar că asigură securitatea alimentară, ci și sporește competitivitatea agriculturii românești în Uniunea Europeană. Pe măsură ce cererea globală pentru practici agricole sustenabile și cu productivitate ridicată crește, îmbunătățirea eficienței și producției în sectorul cerealelor devine din ce în ce mai importantă pentru fermierii din întreaga țară.

Conform Eurostat, România s-a clasat pe locul al patrulea în 2023 în topul producătorilor de cereale din UE, după Franța, Germania și Polonia. Mai mult, datele Institutului Național de Statistică (INS) din 2024 arată că fermierii din țara noastră au produs 20,5 milioane de tone de cereale, marcând o creștere de 9% față de anul precedent. Această realizare remarcabilă reflectă dedicarea comunității agricole și potențialul agricol vast al țării.

 

Arylex™ Active, aliatul fermierilor pentru eficiență și productivitate

 

Momentul realizării fiecărei sarcini agricole joacă un rol crucial în atingerea unei productivități optime. De la însămânțare și irigație până la combaterea dăunătorilor și a buruienilor, precizia și punctualitatea pot face diferența între o recoltă bogată și o pierdere financiară. De exemplu, dacă se pierde momentul pentru aplicarea erbicidelor, controlul buruienilor poate fi suboptimal, forțând fermierii să recurgă la măsuri suplimentare și costisitoare. În mod similar, întârzierile în combaterea dăunătorilor pot duce la infestări mai mari, mai greu și mai costisitor de gestionat. Aceste exemple evidențiază importanța gestionării eficiente a timpului, o abilitate care separă fermele extrem de productive de cele cu rezultate mai scăzute.

În acest context, soluțiile inovatoare precum Arylex™ Active, un ingredient activ pentru erbicide dezvoltat de Corteva Agriscience, compania internațională de știință și tehnologie agricolă, oferă un aliat valoros fermierilor care urmăresc atât eficiența, cât și productivitatea. Molecula este concepută să asigure un control excepțional al buruienilor din culturile de cereale, permițând fermierilor să abordeze una dintre cele mai presante provocări – buruienile cu frunză lată – exact atunci când este necesar. Cu o degradare rapidă în sol și țesuturile plantelor, Arylex™ Active nu doar că este o alegere ecologică, ci și sprijină strategii eficiente de rotație a culturilor, esențiale pentru sănătatea solului și agricultura sustenabilă.

În plus, dozele reduse de aplicare ale Arylex™ Active și formula chimica unică diminuează riscul apariției rezistenței buruienilor, o problemă tot mai întâlnită în sistemele agricole cu presiune ridicată în cultivarea cerealelor. Acest lucru asigură fermierilor posibilitatea de a menține un control eficient al buruienilor pe termen lung, păstrând atât calitatea, cât și cantitatea recoltelor.

Eficacitatea erbicidelor pe bază de Arylex™ Active economisesc timp prețios, permițând fermierilor să se concentreze pe alte sarcini critice din operațiunile lor, consolidând astfel importanța gestionării timpului în obținerea unei productivități constante. Spre exemplu, noutățile din portofoliul de protecția plantelor de la Corteva pentru 2025, erbicidele Tarzec™ și Rexade™ cu Arylex™ Active, reprezintă soluții complete pentru grâu – alternative „all-in-one” care oferă performanță pură prin controlul convenabil al buruienilor graminee și al celor cu frunză lată din culturi.

Concentrându-se pe instrumente și strategii care îmbunătățesc atât eficiența, cât și sustenabilitatea, fermierii își pot consolida rolul de lideri în producția de cereale europeană, asigurând totodată reziliența și competitivitatea pe termen lung. Din acest motiv, Corteva va continua să dezvolte soluții care, în conformitate cu strategia de sustenabilitate a companiei, oferă fermierilor instrumente care contribuie la protecția culturilor și la dezvoltarea sustenabilă a agriculturii.

 

Autor: MARIA CÎRJĂ, Marketing Manager Corteva Agriscience RO & MD

CITEȘTE ȘI: Cum pot contribui fermierii la combaterea risipei alimentare

 

Adaptarea la provocările momentului, prin lucrări minime și hibrizi performanți

 

Protecție sustenabilă a culturilor și producții de calitate

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor
Marți, 05 Noiembrie 2024 14:34

Acumularea și conservarea apei în sol

Apa a devenit factorul determinant al producției agricole. Ea asigură 95% din potențialul de creștere a plantelor.

În condițiile schimbărilor climatice, cu seceta tot mai frecventă, sunt necesare măsuri agrotehnice care să asigure acumularea fiecărei picături de apă din precipitații în sol și să evite pierderile de apă.

Perioada de toamnă-iarnă este cea mai favorabilă începerii acestei activități.

 

Mobilizarea tuturor mijloacelor și forțelor pentru a avea apă în sol

 

Efectuarea corectă și la timp a măsurilor de mai jos poate asigura recolte satisfăcătoare și în condiții de secetă.

1. Aplicarea sistemelor de lucrare a solului prin care să se asigure o afânare optimă a solului caracterizată prin:

       - densitatea aparentă a solului să fie de 1-1,4 g/cm3;

       - porozitatea totală a solului 40-60%, din care porozitatea capilară 30-36%, iar porozitatea necapilară (de aerație), 18-24%;

       -  permeabilitatea solului să fie de 7-10 cm/oră.

În mod practic, permeabilitatea se consideră bună când după o ploaie, în 24 de ore, umiditatea ajunge la un metru adâncime. Dacă există straturi impermeabile în sol, acestea se distrug prin lucrări de afânare adâncă și de scarificare a solului.

Afânarea nu trebuie să fie mai adâncă decât nivelul de dezvoltare a sistemului radicular, pentru că se pierde apa în adâncime, și nici prea afânat, pentru că circulă aerul prin sol, antrenează apa și se pierde prin evaporare. În același timp, o aerisire intensă provoacă mineralizarea humusului cu eliberarea de nutrienți care pot fi levigați.

Capacitatea maximă pentru apă este de 59% în solul afânat, de 46% în solul așezat și de 38% în solul tasat-compactat.

Capacitatea de reținere a apei de către sol este considerată mică la 300-500 mm, mijlocie la 500-900 mm și mare la 900-1.200 mm.

2. Este indicată aplicarea de îngrășăminte organice, de amendamente și cultivarea solei cu graminee și leguminoase perene. Acestea contribuie la o bună structurare a solului, iar solul cu structură glomerulară are cea mai bună porozitate și permeabilitate pentru acumularea și conservarea apei în sol.

Îngrășămintele starter forțează germinarea, răsărirea și creșterea rapidă în primele faze. Totodată, îngrășămintele organice au capacitatea de a reține cu 20% mai multă apă, iar humusul rezultat din descompunerea îngrășămintelor organice reține de 4-6 ori mai multă apă, întârziind cu două săptămâni apariția secetei.

În același timp, rădăcinile culturilor perene fragmentează și presează particulele elementare de sol pentru a se uni în agregate.

De remarcat că în solul cu structura glomerulară se infiltrează 85% din precipitații, față de 30-40% în solul nestructurat.

3. Este importantă aranjarea în rotație a culturilor cu înrădăcinarea la diferite adâncimi pentru a nu consuma apa numai din anumite straturi. Cerealele păioase, fasolea, mazărea, inul au înrădăcinare superficială și consumă apa din stratul 0,5-1 m, iar porumbul, floarea-soarelui și sfecla de zahăr, de la 1-2 m.

O corectă rotație a culturilor reduce și gradul de îmburuienare, acestea fiind mari consumatoare de apă. Astfel, în monocultura de grâu s-au găsit 416 buruieni/m2, în rotația de doi ani 134 buruieni/m2, iar în rotația de trei ani numai 68 buruieni/m2.

4. Folosirea de specii de plante și din acestea alese soiuri/hibrizi mai rezistenți la secetă, cu sistem radicular dezvoltat și profund, cu suprafața foliară redusă, cu perioada de vegetație mai scurtă, cu creștere rapidă și rezistență la stresul hidric, care ajung la maturitate cu consum mai mic de apă și înainte de apariția secetei și arșiței puternice.

Spre exemplu, consumul specific de apă (cantitatea de apă consumată pentru a forma un kilogram de masă vegetală) la mei este 311, la sorg 322, la grâu 519, iar la in 905 etc.

5. Reducerea gradului de îmburuienare, deoarece buruienile consumă de 2-4 ori mai multă apă decât plantele de cultură. Dacă, de pildă, consumul specific la porumb este de 368, la buruieni este de 800-1.200.

Apa se mai pierde și prin efectuarea lucrărilor de reducere a gradului de îmburuienare.

6. Aplicarea măsurilor de prevenire a pierderilor de apă din sol, care constau din:

     - mulcirea solului cu diferite materiale organice reduce evaporarea apei de 3-4 ori;

     - terenul mărunțit și nivelat reduce pierderile de apă cu 30-40%;

     - efectuarea prașilei și distrugerea crustei reduc evaporarea apei.

Exemplu: în porumbul prășit se pierde 1,8 mm/zi, în cel neprășit, 4,9 mm/zi.

7. Semănatul în epoca optimă, eventual mai timpuriu, asigură germinarea și răsărirea explozivă și uniformă, cu plante viguroase care cresc rapid, acoperă și protejează solul, înăbușă buruienile.

8. Asigurarea unei densități a plantelor în funcție de gradul de fertilitate și de rezerva de apă din sol. În condiții de secetă, densitatea va fi mai mică, dar cu plante uniform repartizate, fără goluri, pentru a menține în lan o umiditate relativă a aerului mai mare, reducând evapotranspirația și înăbușind creșterea buruienilor.

Exemplu: la 70.000 plante/ha uniform repartizate s-au pierdut 82 mm/ha/zi, iar la 40.000 cu goluri, 114 mm/zi/ha.

9. Folosirea rațională a îngrășămintelor contribuie la reducerea consumului de apă din sol. O fertilizare echilibrată asigură necesarul de hrană pentru plante cu mai puțină apă. Așa, de exemplu, consumul specific de apă la grâu este 349 când se fertilizează și 928 la nefertilizat. Concentrația soluției solului mai mare, la fertilizare, reduce evaporarea apei din sol.

Aplicarea îngrășămintelor foliare Sun Guard reduce evapotranspirația cu 35%.

10. Tăvălugirea terenului proaspăt arat asigură mărunțirea și nivelarea solului și reduce evaporarea apei la suprafața solului. Nu este indicat tăvălugul neted, ci un tăvălug cu inele, dințat, stelat etc., care asigură o așezare a solului în adâncime, fără capilare la suprafață.

 

Articol de: prof. dr. ing. VASILE POPESCU

Publicat în Revista Fermierului, ediția print – noiembrie 2024
Abonamente, AICI!

CITEȘTE ȘI: Fenomenul trezirii la viață a seminței în procesul de germinație

 

Râmele, plugul biologic al solului

 

Când și cum lucrăm pământul

Publicat în Opinii

Readuc în atenția fermierilor Macrophomina phaseolina, patogenul care și în acest an a produs pagube în culturile de floarea-soarelui. Seceta a fost favorabilă dezvoltării acestui fung (iubește căldura).

În 2024, seceta, arșița și fungul Macrophomina phaseolina au distrus multe culturi de floarea-soarelui, mai ales în sudul României. De asemenea, și în Banat fungul este prezent în culturile de floarea-soarelui. În această perioadă putem observa plantele complet uscate și căzute la sol. Există zone în țară unde plantele de floarea-soarelui sunt încă verzi și aparent sănătoase. În Timiș am observat culturi care sunt înflorite și au toate frunzele verzi. Este vorba de acele culturi care au fost semănate la sfârșitul lunii mai și au scăpat de arșiță. Macrophomina phaseolina este prezentă și în aceste sole (observații realizate la data de 6 august 2024). De ce acest fung câștigă teren tot mai mult în România? La răspuns trebuie să ne gândim cu toții. Care sunt cauzele? Le veți afla parcurgând acest material.

camp floarea soarelui

Care sunt factorii care au condus la creșterea sursei de inocul a fungului Macrophomina phaseolina în solurile din România? Am identificat acest patogen în Banat prin anul 2021 la cererea unui fermier care nu știa cu ce se confruntă. În acel an, fungul a pus la pământ mai multe hectare de floarea-soarelui în ferma de unde proveneau probele. De atunci și până în prezent am observat că fungul continuă să producă pagube în fiecare vară, iar incidența și intensitatea atacului sunt tot mai ridicate.

floare

 

Factorii de risc

 

Factorii care contribuie la extinderea acestui patogen în România sunt:

  • Lipsa apei din sol - predispune plantele de floarea-soarelui la atacul agenților patogeni sistemici care distrug și blochează vasele [Vear, 2016; Debaeke et al., 2017].

  • Creșterea temperaturilor peste 280C. Vremea caldă și secetoasă stimulează patogenul Macrophomina phaseolina. După Sarova et al. (2003), condițiile de vreme caldă și uscată (temperaturi cuprinse între 28 - 300C și lipsa apei din sol) favorizează instalarea fungului. Temperatura, umiditatea atmosferică și cea disponibilă sunt foarte importante în realizarea infecțiilor cu Macrophomina phaseolina. După Marquez et al. (2021), microscleroții germinează la temperaturi cuprinse între 30 - 350C.

  • Caracterul invaziv al patogenului phaseolina (reiese din cele mai multe studii analizate). Pe lângă asta, numărul mare de plante gazdă, distribuția la nivel global, schimbările climatice arată că fungul prezintă importanță deosebită pentru viitorul culturii de floarea-soarelui și nu numai [Cotuna et al., 2022].

  • Condițiile de sol, înrădăcinarea defectuoasă a plantelor, carențele de bor (patogenul se instalează cu ușurință pe plantele afectate de fiziopatii) - Popescu, 2005. Același autor arată că fungul infectează în general plantele cu afecțiuni fiziopatice, la care creșterea rădăcinii principale este stopată, iar rădăcinile secundare încep să îmbătrânească. La aceste plante, sistemul radicular va fi ocupat de Fusarium sp., dar și de alte ciuperci care pregătesc astfel țesuturile radiculare pentru infecția cu Macrophomina phaseolina. Aproape întotdeauna, pe rădăcinile atacate de fung se observă micelii albe - rozii specifice fungului Fusarium sp.

  • Densitatea ridicată, rănile mecanice, atacul insectelor favorizează instalarea patogenului [Shiekh & Ghaffar, 1984; Ahmed et al., 1991].

  • Prezența microscleroților în sol în cantitate mare. Macrophomina phaseolina rezistă în sol sub formă de microscleroți, pe resturile vegetale, dar și în masa de semințe [EPPO, 2000; Csüllög et al., 2020; Popescu, 2005; Docea & Severin, 1990]. Microscleroții pot supraviețui în sol de la doi până la 15 ani [Baird et al., 2003; Gupta et al., 2012; Csüllög et al., 2020].

  • Lucrările minimale ale solului.

  • Rotațiile scurte.

Analizând factorii de risc, cu ușurință ne dăm seama că, creșterea temperaturilor în zonele cu climat temperat, însoțită de lipsa precipitațiilor ar putea crea probleme deosebite în culturile de floarea-soarelui în viitor, făcându-le vulnerabile la atacul patogenului M. phaseolina [Debaeke et al., 2017].

camp fs

 

Cum putem lupta cu acest patogen?

 

Deoarece prin metode chimice nu putem controla patogenul, pierderile pot fi evitate dacă ținem cont de câteva măsuri profilactice:

  • Cultivarea hibrizilor rezistenți sau toleranți la boală.

  • Irigarea culturilor în condiții de secetă și temperaturi ridicate.

  • Distrugerea resturilor vegetale infectate (sunt pline de microscleroți).

  • Înființarea culturilor în soluri cu textură corespunzătoare.

  • Respectarea rotației culturilor. Cu privire la rotație, nu întotdeauna rezultatele sunt cele scontate din cauza polifagiei ciupercii, care are capacitatea de a infecta peste 300 de plante cultivate și buruieni [Francl et al., 1988; Hafeez & Ahmad, 1997; EPPO, 2000; Popescu, 2005].

  • Utilizarea la semănat de sămânță liberă de microscleroți, lucrări ale solului de calitate superioară, igiena culturală [Docea & Severin, 1990].

tulina fs

Mai multe informații cu privire la recunoașterea simptomelor, biologia și managementul integrat al fungului Macrophomina phaseolina găsiți în articolele pe care le-am documentat, scris și publicat de-a lungul timpului:

otilia

Bibliografie
Ahmad, I., Burney, K., Asad, S., 1991, Current status of sunflower diseases in Pakistan. National Symposium on Status of Plant Pathology in Pakistan. December 3 - 5, 1991, Karachi, P. 53.
Baird, R., E., Watson, C., E., Scruggs, M., 2003, Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Dis. 87: 563 – 566.
Cotuna, Otilia, Paraschivu, Mirela, Sărățeanu, Veronica, 2022, Charcoal rot of the sunflower roots and stems (Macrophomina phaseolina (Tassi) Goid.) - an overview, Scientific papers - Series management economic engineering in agriculture and rural development, volume 22, Issue 1, 2022, ISSN 2284-7995, eISSN 2285-3952, 107 - 116.
Csüllög, K., Racz, E., D., Tarcali, G., 2020, The Charcoal rot disease (Macrophomina phaseolina (Tassi) Goid.) in Hungary, Characterization of Macrophomina phaseolina fungus, National Seminar on Recent Advances in Fungal Diversity, Plant - Microbes Interaction and Disease Management At: Banaras Hindu University, Varanasi, India.
Debaeke, P., Casadebaig, P., Flenet, F., Langlade, N., 2017, Sunflower crop and climate change: vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL, 2017, 24(1) D102.
Docea, E., Severin, V., 1990, Ghid pentru recunoașterea și combaterea bolilor plantelor agricole, Editura Ceres, București, p. 137, 320 p.
Francl, L., J., Wyllie, T., D., Rosenbrock, S., M., 1988, Influence of crop rotation on population density of Macrophomina phaseolina in soil infested with Heterodera glycines. Plant Dis. 72, 760 – 764.
Gupta, G., K., Sharma, S., K., Ramteke, R., 2012, Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). J. Phytopathol. 160, 167 –180.
Hafeez, A., Ahmad, S., 1997, Screening of sunflower germplasm for resistance to charcoal rot in Pakistan. Pak. J. of Phytopathology 9:74 - 76.
Marquez, N., Giachero, M., L., Declerck, S., Ducasse, D., A., 2021, Macrophomina phaseolina: General Characteristics of Pathogenicity and Methods of Control. Front. Plant Sci. 12:634397.
Popescu, G., 2005, Tratat de patologia plantelor, vol II, Agricultură, Editura Eurobit, p. 143, 341 p.
Sarova, J., Kudlikova, I., Zalud, Z, Veverka, K., 2003, Macrophomina phaseolina (Tassi) Goid moving north temperature adaptation or change in climate? J Plant Dis Prot 110: 444 – 448.
Shiekh, A., H., Ghaffar, A., 1984, Reduction in variety of sclerotia of Macrophomina phaseolina with polyethylene mulching of soil. Soil Biology and Biochemistry 16: 77 - 79.
Vear, F., 2016, Changes in sunflower breeding over the last fifty years. OCL 23 (2): D202.
***EPPO Standard, European and Mediterranean Plant Protection Organization PP 2/21(1), 2000 - Guidelines on good plant protection practice - Sunflower, 9 p.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor

Orice cultură de succes pleacă de la sămânță, de la genetică. Numai că, în contextul schimbărilor climatice, o genetică bună nu mai reprezintă garanția unei recolte bogate, iar cunoașterea tehnologiei de cultivare poate face diferență.

În cele ce urmează, vom trece în revistă punctele importante, anumite recomandări pentru fiecare verigă tehnologică, pentru a obține o cultură de rapiță de succes.

Rotația culturii

Grâul de toamnă este principala plantă premergătoare pentru cultura de rapiță în toate zonele din România. Este de dorit ca rapița să revină pe același teren după minimum trei ani. Rotația de 3-4 ani este eficientă în reducerea presiunii unor boli, cum ar fi Putregaiul negru (Guignardia bidwellii) și Alternarioza. Leguminoasele pentru boabe și floarea-soarelui pot fi atacate de Sclerotinia sclerotiorum, iar din acest motiv, trebuie evitate în rotație.

Pregătirea terenului

Rapița este sensibilă la efectul remanent al unor erbicide, în special cele din grupa sulfonilureelor. Efectul remanent se poate manifesta de la răsărit până la înflorire și este mai mic atunci când, după aplicarea erbicidului, a căzut o cantitate mai mare de precipitații, sau atunci când se ară după recoltarea plantei premergătoare.

În timpul pregătirii terenului, în majoritatea zonelor, solul prezintă un deficit de apă, ca efect al secetei, astfel că aratul, urmat de una-două treceri cu discul greu și apoi efectuarea unei lucrări cu combinatorul pentru pregătirea patului germinativ, nu sunt deloc recomandate, dacă se dorește conservarea apei rămase în sol. Se recomandă o lucrare de dezmiriștire, imediat după recoltat, apoi o trecere cu cizelul la o adâncime de 20-25 cm, fără a se întoarce brazda, concomitent cu tasarea ușoară a solului, pentru a-i reface capilaritatea, bazându-ne pe umiditatea din profunzime.

Dacă discutăm despre lucrări în regim de min-till (lucrări minime), recomandarea Syngenta este hibridul SY Floretta, având sistemul radicular foarte bine dezvoltat, și o tulpină puternică, ce îi conferă toleranță foarte bună la cădere. Pe soluri ușoare, în orice tip de tehnologie, recomandarea de la Syngenta este hibridul SY Robot CL.

Densitatea

Densitatea recomandată la semănat este între 40-60 boabe germinabile/mp, în condiții optime, asigurând o acoperire ideală a terenului până la intrarea în iarnă, fără supraaglomerarea plantelor, dar existând totuși și o „rezervă de plante” în cazul lipsei de umiditate în momentul răsăritului, a unei ierni mai aspre, sau a unui atac masiv de dăunători.

Densitatea  stabilește, în medie, aproximativ 50% din producția scontată. Densitățile sub 25 și peste 75 plante/mp la ieșirea din iarnă determină scăderi de performanță de până la 40%.

Atunci când vorbim despre densitate, nu putem să nu subliniem și importanța calibrării semănătorilor, care în mare  parte sunt încă reglate pe kg/ha. Considerând că masa a 1000 de boabe (MMB) la semințele de rapiță variază destul de mult, cantitatea însămânțată poate fi de la 2 la 6 kg/ha. Recomandarea Syngenta este acordarea atenției loturilor (partidelor), chiar și de la același hibrid, pentru că pot exista diferențe a greutății masei la o mie de boabe.

Distanța între rânduri

Distanța se poate regla între 12,5 și 75 cm. Cele mai bune rezultate se obțin la distanțele cuprinse între 25 cm și 40 cm și, în unele cazuri, la 70 cm între rânduri. La distanțele mici între rânduri avem un control mai bun asupra buruienilor, și astfel nu sunt necesare prașilele. Avem o rezistență mai bună la cădere, iar recoltarea mecanizată va avea loc în condiții bune și foarte bune. Distanțele mari sunt recomandate doar în zonele cu soluri fertile și bine aprovizionate cu apă. Aici recomandarea Syngenta este SY Glorietta datorită capacității foarte bune de ramificare.

Alegerea distanței corespunzătoare influențează producția cu până la 20% din potențialul solei.

Perioada de semănat

Momentul de semănat este totul. Se consideră că, în condiții optime, fiecare zi întârziată la semănat reduce potențialul total de producție cu 1%. Cazul ideal este ca, din momentul semănatului și până la primele cinci zile cu temperaturi sub 20C, să fi trecut aproximativ 110 zile. Pentru a asigura germinarea și răsărirea semințelor de rapiță, necesarul acestora de precipitații este de aproximativ 5-10 mm în decurs de 5-10 zile.

Recomandarea Syngenta pentru semănatul timpuriu este SY Glorietta, deoarece hibridul are o dezvoltare lentă în toamnă, fără a exista riscul alungirii tijei. Dacă condițiile ne obligă la un semănat tardiv, cea mai bună recomandare este  hibridul SY Floretta, care are un start exploziv în vegetație, cu o dezvoltare rapidă până în stadiul de patru frunze, iar pentru fermierii care folosesc tehnologia Clearfield®, cea mai bună recomandare este SY Robot CL. După răsărire, din stadiul de cotiledoane și până în stadiul de șase frunze, necesarul de precipitații al plantelor este de aproximativ 40-50 mm.

Dăunători

Principalii dăunători sunt puricii cruciferelor (Phyllotreta spp.) și viespea rapiței (Athalia rosae). Atacul lor este cu atât mai puternic cât timp avem o toamnă caldă și secetoasă. Pragul Economic de Dăunare (PEG) la ambii daunatori este de 2-3 indivizi pe plantă, în 70% din parcelă/solă. Este recomandat controlul dăunătorilor cu produsul Karate Zeon®, sau alți piretroizi sau insecticide sistemice.

Folosirea semințelor netratate sau întârzierea tratamentului poate provoca pierderi de producție de la 10% până la 20% sau compromiterea totală a culturii în cazul unor atacuri foarte puternice.

Buruieni

Presiunea buruienilor în toamnă, și în special a samulastrei de cereale paioase trebuie gestionată cu mare atenție. Se estimează că samulastra de grâu sau orz creează pierderi de producție de la 1% la 3% la o plantă/m2 și ajunge până la 18% în cazuri unde avem 16 plante/m2.

În cazul în care suntem într-o zonă în care avem anual o presiune puternică din partea buruienilor dicotiledonate în toamnă, Syngenta recomandă un hibrid performant pe segmentul Clearfield®, SY Robot CL. Aplicarea în toamnă a erbicidului Cleranda® se face din stadiul de cotiledoane, până în maximum opt frunze.

Bolile care își fac cel mai des apariția în condiții de toamnă caldă și secetoasă și care produc cele mai mari pagube sunt putregaiul negru (Guignardia bidwellii) și făinarea, deja din stadiul de cotiledoane. În cazul putregaiului negru, toți cei trei hibrizi de la Syngenta: SY Glorietta, SY Floretta și SY Robot CL prezintă toleranță, așa că trebuie să ne asigurăm că toți ceilalți factori agrotehnici au fost respectați, mai precis, semănatul în perioada optimă și aplicarea unui regulator de creștere, dacă există riscul de alungire. Pentru făinare nu există toleranță genetică, așa că atenție mare la semănat. Densitățile mari favorizează boala, iar în anumite cazuri trebuie făcut un tratament din toamnă.

Reluarea în vegetație

Rapița își poate relua ciclul de vegetație și în ferestrele iernii (cu temperaturi de 5-7 grade Celsius), ceea ce nu este de dorit. Ceutorhynchus napi atacă încă din februarie, atunci când temperaturile depășesc 9-12 grade Celsius. Femela depune ponta în interiorul tulpinii, iar larvele mănâncă interiorul acestora. Trebuie amplasate capcane, apoi se aplică insecticide pentru a controla adulții.

Odată cu alungirea tulpinii, încep să apară și inflorescențele. Înfloritul este determinat și de timpurietatea hibridului. În portofoliul Syngenta, avem hibrizi semi-timpurii, dar SY Glorietta se diferențiază prin faptul că înflorește cel mai târziu dintre hibrizii din portofoliu.

Atunci când vorbim despre talia plantelor, trebuie luate în considerare mai multe aspecte, cum ar fi: varietatea, condițiile meteo, tehnologia. Talia hibrizilor este în medie între 1,5 m până la 2 m. În portofoliul Syngenta avem hibrizi de talie medie, compacți, care se ramifică foarte bine și sunt ușor de recoltat (SY Glorietta, SY Floretta, SY Robot CL). Anul acesta, în zonele secetoase s-a observat o talie mai mică a hibrizilor din cauza lipsei de apă, fapt ce a dus și la o înflorire timpurie.

syngenta

Un alt aspect cheie în tehnologia rapiței este rezistența la cădere, iar aici sunt câteva elemente cheie care trebuie discutate și luate în considerare:

  • Hibridul: Avem în portofoliul Syngenta hibrizi compacți, cu o toleranță foarte bună la cădere, iar aici amintim hibrizii SY Floretta și SY Robot CL;

  • Densitatea optimizată la condițiile de mediu: Densitate optimă la recoltat pentru SY Glorietta și SY Floretta este de 35-45 plante pe mp. O densitate prea mare ar putea duce la căderi;

  • Fertilizarea cu azot: o aplicare a unei fracții mari de azot în stadiile târzii de dezvoltare, poate crea o sensibilitate la cădere;

  • Controlul dăunătorilor: Controlul lui Ceutorhynchus napi trebuie considerat, încă din iarnă. Larvele golesc tulpinile pe interior, lucru care favorizează o cădere masivă a culturii. Totodată, în cazul în care sunt primăveri cu umiditate excesivă și temperatură optimă, se poate instala și Sclerotinia sclerotiorum, pe fondul leziunilor pe care le creează larvele deCeutorhynchus napi;

  • Aplicarea regulatorilor de creștere poate întări tulpina și micșora riscul căderii plantelor.

Coacerea uniformă este o caracteristică foarte importantă a hibrizilor din portofoliul Syngenta. Aceasta poate influența atât momentul recoltatului, cât și toleranța la scuturare. Hibrizii Syngenta au o coacere uniformă, iar în rețeaua de cercetare-testare, nu am observat o sensibilitate deosebită în ceea ce privește scuturarea. Totuși, trebuie avut în vedere maturitatea hibrizilor în momentul recoltatului. Un hibrid mai tardiv, așa cum este SY Glorietta, se va coace mai târziu, astfel că va avea o toleranță mai bună la scuturare. Din acest motiv, recomandăm în fermă cultivarea mai multor hibrizi, cu maturități diferite, pentru a putea realiza un recoltat eșalonat, în etape.

 

Material semnat de Răzvan Lupu, expert tehnic Semințe Syngenta România, în colaborare cu Alexandru Lavu, manager de produs semințe porumb și rapiță Syngenta România și Republica Moldova

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Cultura mare

Plutella xylostella este prezentă în culturile de rapiță, cu densități diferite, funcție de zonă și condițiile climatice.

Primii adulți i-am observat în Timiș la data de 31 martie 2024 în unele culturi (nu peste tot). După această dată am amplasat capcane pentru monitorizarea dăunătorului. Diferențele de temperaturi înregistrate între noapte și zi au influențat negativ zborul în Câmpia Banatului. La această dată, în Banat putem observa în culturile netratate adulți, coconi, larve, ouă. Densitățile sunt scăzute și nu ar trebui să ne îngrijoreze.

În alte zone din țară (unde este mult mai cald) dăunătorul poate crea probleme dacă nu se intervine la timp. Pentru a putea combate eficient acest dăunător important al rapiței, vă punem la dispoziție date despre biologia, daunele produse, monitorizarea și managementul integrat.

 

Importanța economică

 

Molia Plutella xylostella este considerată specie invazivă, greu de combătut din cauza rezistenței la insecticidele actuale, cât și la biopreparatele pe bază de Bacillus thuringiensis [Tabashnik et al., 1990; Gong et al., 2014]. În multe zone din lume, această molie face parte dintre dăunătorii principali ai legumelor crucifere (varză, conopidă, broccoli), cât și ai rapiței și muștarului [Talekar & Shelton, 1993; Sarfraz et al., 2006; Furlong et al., 2013].

În țara noastră, Plutella xylostella este răspândită în zonele unde se cultivă varză, conopidă, rapiță. Creșterea suprafețelor cultivate cu rapiță în România a condus și la creșterea populațiilor de Plutella xylostella. Pe lângă asta, schimbările climatice actuale și-au pus amprenta asupra biologiei moliei. În literatura de specialitate se arată că primii fluturi apar primăvara în luna mai [Roșca et al., 2011]. Monitorizarea din acest an de la Stațiunea Didactică a Universității de Științele Vieții din Timișoara arată că primii fluturi au fost observați la sfârșitul lunii martie 2024.

Larvă și daună la rapiță

Larvă și daună la rapiță

Impactul economic al acestui dăunător este greu de evaluat, deoarece în unele zone din lume produce pagube importante, iar în altele nu. Eventual pot fi calculate cheltuielile cu pesticide. La nivel mondial se constată că, combaterea dăunătorului este din ce în ce mai costisitoare [Zalucki et al., 2012].

Daunele produse pot ajunge chiar și la 50% din producție în anii cu infestări masive. Fermierii observă dăunătorul târziu, iar pagubele sunt inevitabile. Monitorizarea este indispensabilă și poate ajuta în stabilirea momentului optim de combatere.

 

Recunoașterea simptomelor

 

Imediat după eclozare larvele încep să se hrănească continuu, fiind recunoscute pentru lăcomia lor. În funcție de vârstă, ele se hrănesc diferit și produc simptome diferite, după cum urmează:

  • În primul stadiu, au un mod de hrănire minier, consumând parenchimul frunzelor;

  • După două - trei zile încep să se hrănească pe partea inferioară a frunzelor, rozând epiderma inferioară și parenchimul, cu excepția epidermei superioare (aspect de ferestruire);

  • În următoarele trei stadii, larvele devin foarte lacome consumând frunzișul non - stop, lăsând găuri ovale de diferite dimensiuni în frunze, iar aspectul de ferestruire dispare [Talekar & Shelton, 1993; Castelo Branco et al., 1997; Roșca et al., 2011]. La infestări severe din frunze rămân doar nervurile;

  • În urma hrănirii pe tulpini și silicve apare un simptom de albire în zona respectivă;

  • Hrănirea cu muguri florali, flori și silicve tinere este poate cea mai păgubitoare. Semințele din silicvele atacate nu se vor mai umple și se pot deschide prematur. În cazul în care larvele consumă semințele în formare, producțiile vor fi scăzute [Canola Council of Canada, 2021].

Daune la frunze

Daune la frunze

 

Biologia dăunătorului

 

În România, Plutella xylostella prezintă trei generații pe an. În alte zone din lume, mai călduroase, poate ajunge la șase generații pe an și chiar mai mult. Dăunătorul iernează în stadiul de pupă în cocon pe frunzele atacate. În anul următor, primii adulți vor apărea spre sfârșitul lunii mai. Condițiile climatice au schimbat dinamica acestei specii, în unele zone din România apărând în acest an încă de la sfârșitul lunii martie (în Banat, de exemplu).

Cele trei generații se dezvoltă în următoarele perioade:

  • În lunile mai - iulie se dezvoltă prima generație;

  • În iulie - august, a doua generație;

  • Generația a treia, din august până anul următor [Roșca et al., 2011].

Ciclul de viață are patru etape sau stadii: adult, ou, larvă, pupă. Durata fiecărui stadiu este condiționată de condițiile climatice (temperatura mai ales). Adulții sunt mici (cam 9 mm lungime) și au culoare predominant maro - cenușiu către ocru. Aripile au culoare variabilă de la ocru la maro, cu pete negre. Când sunt pliate, în partea superioară formează trei sau patru zone în formă de diamant de culoare alb - cenușiu. Din acest motiv i se mai spune „molia diamantată” [Talekar & Shelton, 1993; Golizadeh et al., 2007; Sarnthoy et al., 1989; CABI, 2015]. Adulții au activitate maximă la amurg și în timpul nopții. Dacă intrăm într-un lan de rapiță și atingem plantele, vom observa zborul în zig - zag al adulților.

Cocon

Cocon

Imediat după apariția adulților, începe împerecherea. La câteva ore după împerechere, femelele încep depunerea pontei. O femelă poate depune 80 - 100 ouă. După unii autori, pot depune până la 200 de ouă pe parcursul a zece zile. Aproximativ 95% din femele încep să depună ouă la câteva ore după împerechere. Ouăle sunt ovale, au culoare gălbuie și aproximativ 0,5 mm. De regulă sunt depuse mai ales pe partea inferioară a frunzelor (lângă nervuri de obicei) și mai puțin pe cea superioară. În acest fel, ele sunt protejate de lumina directă, de vânt, de ploi [Silva & Furlong, 2012; Talekar & Shelton, 1993; Åsman et al., 2001].

După 3 - 5 zile de incubație (funcție de temperaturi) apar larvele care încep să se hrănească, fiind recunoscute pentru lăcomia lor. Ele trec prin patru stadii și se hrănesc pe frunze, muguri florali, flori, tulpini și silicve. Ajunse în stadiul patru, larvele nu mai consumă frunze și intră în stadiul prepupal. Acest stadiu durează între 1 - 3 zile, atunci când temperaturile sunt cuprinse între 10 - 200C. Perioada pupală durează și ea între 3 și 20 de zile, funcție de planta gazdă și temperaturi (10 - 300C). Suma de temperaturi necesară dezvoltării unui ciclu de viață este de aproximativ 2600C. Ciclul de viață al unei generații se poate întinde pe 60 - 80 de zile, în funcție de condițiile de temperatură ale zonei, pornind de la pragul de 70C și o temperatură medie de 100C. Dacă temperaturile sunt mai ridicate, numărul de zile necesare dezvoltării se reduce la jumătate [Golizadeh et al., 2007; CABI, 2015; Liu et al., 2002].

În zonele foarte calde din lume, această insectă are un ciclu de viață scurt, în jur de 18 zile, iar populația sa poate crește de până la 60 de ori de la o generație la alta [De Bortoli et al., 2011]. Studiile indică că moliile pot rămâne în zbor continuu câteva zile, putând zbura până la 1.000 km/zi. Nu se cunoaște încă cum reușesc moliile să supraviețuiască la temperaturi scăzute și la altitudine mare [Talekar & Shelton, 1993].

Larvă pe silicvă, 2024

Larvă pe silicvă 2024

 

Managementul integrat al moliei verzei

 

Din păcate, managementul actual al moliei Plutella xylostella (și nu numai) se bazează în mare măsură pe tratamentele chimice. Pentru un control mai bun și mai durabil pe termen lung, managementul acestui dăunător trebuie îmbunătățit, în așa fel încât combaterea să nu se bazeze strict pe aplicarea insecticidelor (mai ales la varză, conopidă).

Combaterea moliei Plutella xylostella se poate face printr-o serie de măsuri profilactice, chimice și biologice (sistemul integrat de combatere).

Cele mai importante măsuri profilactice sunt:

  • Distrugerea buruienilor (a cruciferelor spontane mai ales);

  • Efectuarea arăturilor adânci pentru îngroparea resturilor vegetale;

  • Cultivarea soiurilor tolerante;

  • Rotația culturilor. Cultivarea pe suprafețe mari a rapiței, practicarea rotațiilor scurte au dus la creșterea populațiilor de Plutella xylostella;

  • Irigarea prin aspersiune (stresează adulții, larvele cad de pe frunze);

  • Practicarea intercroping-ului (cu usturoi, salată verde);

  • Înființarea de culturi capcană pe marginea culturilor [Shelton & Badenes-Perez, 2006; Roșca et al., 2011].

Tratamentele chimice pot fi eficiente doar dacă fermierii monitorizează dăunătorul. Pentru asta, cercetarea pe teren este necesară.

Capcanele cu feromoni pot fi utilizate pentru monitorizarea moliei și stabilirea curbelor de zbor. Curbele de zbor pot fi un bun indicator pentru alegerea momentului optim de combatere. Studiile efectuate în India arată că monitorizarea populațiilor de Plutella xylostella cu ajutorul capcanelor feromonale au dat rezultate foarte bune în combatere. Datele obținute au putut indica un moment optim de aplicare al tratamentelor, în așa fel încât populațiile au fost drastic diminuate și daunele reduse. Pe lângă asta, numărul de tratamente a fost și el redus [Venkata et al., 2001].

În același timp, câmpurile ar trebui verificate de cel puțin două ori pe săptămână. Controlul trebuie să se facă în mai multe puncte din lan sau cultură (cel puțin cinci). Se vor verifica în fiecare punct măcar 0,1 m2. Pe această suprafață se vor număra larvele.

Larvă pe silicvă. Preferă silicvele mai mici

Larvă pe silicvă. Preferă silicvele mai mici

În funcție de planta gazdă, fenologie, există mai multe praguri de dăunare calculate, după cum urmează:

  • La varză, PED-ul este de 8 - 10 larve/plantă [Tanskii, 1981]. Momentele de observație sunt: rozeta de frunze, începutul formării căpățânii;

  • La rapiță, pragul economic de dăunare la care trebuie efectuat tratamentul este de 20 - 30 larve/m2 [Canola Encyclopedia, 2015].

În cadrul sistemului de combatere integrată al acestui dăunător, măsurile chimice ocupă un loc fruntaș. În primul stadiu, larvele nu pot fi omorâte datorită modului minier de hrănire. Din stadiul doi ele pot fi combătute chimic.

În România sunt omologate câteva insecticide pentru combaterea moliei la varză: Cipermetrin; Deltametrin; Gama - cihalotrin; Emamectin benzoat; Clorantraniliprol + lambda - cihalotrin; Ciantraniliprol; Spinosad; Clorantraniliprol [Aplicația Pesticide 2.24.3.1, 2024].

Pentru rapiță nu sunt omologate produse în țara noastră, conform Aplicației Pesticide 2.24.3.1 din 2024. Dintre pesticidele recomandate, grupul chimic al piretroizilor este cel mai important și mai utilizat pentru controlul moliei P. xylostella.

Controlul chimic al P. xylostella se recomandă atunci când densitatea larvelor depășește pragul economic, care variază în raport cu stadiul de creștere al culturii și condițiile de mediu [Micic, 2005; Miles, 2002]. Utilizarea de multe ori incorectă a acestor substanțe chimice a crescut rezistența moliei verzei [Carazo et al., 1999; Castelo Branco et al., 2001]. Multe studii arată că, populațiile de P. xylostella sunt considerate foarte predispuse la dezvoltarea rezistenței la insecticide. De altfel, P. xylostella a fost primul dăunător raportat a fi rezistent la dicloro-difenil-triclor-etan (DDT), la numai trei ani de la începutul utilizării sale [Ankersmit, 1953]. Mai târziu a dezvoltat rezistență semnificativă la aproape orice insecticid aplicat, inclusiv la substanțe chimice noi [Sarfraz & Keddie, 2005; Ridland & Endesby, 2011].

Gestionarea populației de P. xylostella folosind metode de control chimice poate fi o strategie interesantă dacă este bine utilizată, datorită numărului mare de grupuri chimice cu ingrediente active diferite, care permite utilizarea alternativă a substanțelor chimice, prevenind dezvoltarea rezistenței. Aceste produse pot fi utilizate împreună cu alte tehnici de control pentru a reduce numărul de aplicații de pesticide și pentru a îmbunătăți calitatea producției.

Un aspect foarte important în alegerea produsului chimic este selectivitatea acestuia, deoarece multe substanțe chimice au o selectivitate ridicată pentru gazdă, dar nu și pentru agenții de control biologic, care contribuie la menținerea populațiilor considerate benefice pentru managementul integrat al P. xylostella.

Capcană cu feromoni

capcana

În combaterea biologică a moliei P. xylostella pot fi utilizate preparate pe bază de Bacillus thuringiensis subsp. kurstaki (tulpina PB 34). Managementul integrat al P. xylostella bazat pe controlul biologic cu bacteria entomopatogenă B. thuringiensis este o metodă importantă pentru reducerea densității populației acestui dăunător în culturile de Brassicaceae. Cu toate acestea, utilizarea acestui entomopatogen trebuie să fie bine planificată, deoarece această molie se află printre primele insecte care au dezvoltat rezistență la insecticidul biologic pe bază de Bacillus thuringiensis [Kirsch & Schmutlerer, 1988; Tabashnik, 1990].

De interes sunt și fungii entomopatogeni Metarhizium anisopliae și Beauveria bassiana pentru controlul P. xylostella. Beauveria bassiana este disponibilă ca produs pe piață pentru gestionarea insectelor dăunătoare. Utilizată în combaterea moliei verzei, a redus cu succes populațiile și s-a constatat că se răspândește eficient de la moliile contaminate la cele sănătoase [Sarfraz et al., 2005].

În mod natural, toate stadiile moliei Plutella xylostella sunt atacate de numeroși parazitoizi și prădători, parazitoizii fiind cei mai studiați. Peste 90 de specii parazitoide atacă molia diamantată [Goodwin, 1979].

Paraziții de ouă aparținând genurilor polifage Trichogramma contribuie puțin la controlul natural, necesitând eliberări frecvente de viespi în câmp. Paraziții de larve sunt cei mai predominanți și în același timp cei mai eficienți. De exemplu, în Brazilia au fost observate șapte specii de parazitoizi într-o populație de P. xylostella la culturile de varză, cele mai frecvente fiind două specii: Diadegma liontiniae și Apanteles piceotrichosus. Cotesia plutellae și Actia sp., mai numeroase în trecut, au devenit parazitoizi minori în prezent.

fluturi

Parazitoizii din genul Trichogramma se numără printre agenții entomofagi care au fost mult studiați pentru P. xylostella. Specia T. pretiosum, tulpina Tp8, poate parazita aproximativ 15 ouă de P. xylostella în prima sau a doua generație atunci când sunt crescute în această gazdă în condiții de laborator, cu apariție de 100% și 10 până la 11 zile pentru apariția adulților [Volpe et al., 2006]. Mai mult, modalitatea optimă de a crește în masă acest parasitoid în laborator este de a folosi ouă lipite pe cartoane de culoare albastră, verde sau albă [Magalhaes et al., 2012].

Dintre prădătorii moliei Plutella xylostella, de interes este P. nigrispinus, care are un potențial mare de utilizare în controlul acesteia. P. nigrispinus a fost raportat că se hrănește cu P. xylostella în culturile de crucifere, consumând în medie 11 larve sau 5 - 6 pupe în 24 de ore [Silva - Torres et al., 2010; Vacari et al., 2012]. Despre adulții de Orius insidiosus există date care arată că pot consuma în jur de 6 ouă de Plutella xylostella în 24 de ore [Brito et al., 2009].

Numeroase studii se fac astăzi cu privire la utilizarea nematozilor entomopatogeni în combaterea moliei verzei Plutella xylostella. Cercetările efectuate până acum arată că, nematozii Steinernema carpocapsae pot fi utilizați în combatere mai ales atunci când insecticidele se dovedesc ineficiente [Schroer et al., 2005]. Pentru că molia depune ouăle pe suprafața inferioară a frunzelor iar larvele tinere se hrănesc în aceeași zonă, soluția cu nematozi trebuie direcționată cât se poate de mult acolo. Eficacitatea tratamentului depinde foarte mult de tehnica de pulverizare [Brusselman et al., 2012].

Insecticidele de origine vegetală sunt, de asemenea, un grup foarte important pentru gestionarea populației acestui dăunător. Dintre acestea, extractul de neem (Azadirachta indica) a prezentat rezultate semnificative în controlul P. xylostella [Myron et al., 2012].

Plutella la ceas de seară. După ce am curățat capcana, un fluturaș s-a așezat comod pe acoperișul capcanei

Plutella la ceas de seară. După ce am curățat capcana un fluturaș s a așezat comod pe acoperișul capcanei

 

Bibliografie

Ankersmit G. W., 1953. DDT resistance in Plutella maculipennis (Curt.) Lepidoptera in Java. Bulletin of Entomological Research 1953;44: 421 – 425.
Åsman K., Ekbom B., Rämert B., 2001. Effect of Intercropping on Oviposition and Emigration Behavior of the Leek Moth (Lepidoptera: Acrolepiidae) and the Diamondback Moth (Lepidoptera: Plutellidae). Environmental. Entomology 30(2): 288-294.
Brito J. P., Vacari A. M., Thuler R. T., De Bortoli S. A., 2009. Aspectos biológicos de Orius insidiosus (Say, 1832) predando ovos de Plutella xylostella (L., 1758) e Anagasta kuehniella (Zeller, 1879). Arquivos do Instituto Biológico 2009; 76(4): 627–633.
Brusselman E., Beck B., Pollet S., Temmerman F., Spanoghe P., Moens M., Nuyttens D., 2012. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables. Pest Management Science 2012;68(3): 444 – 453.
Carazo E. R., Cartin V. M. L. , Monge A. V., Lobo J. A. S., Araya L. R., 1999. Resistencia de Plutella xylostella a deltametrina, metamidofós y cartap em Costa Rica. Manejo Integrado de Plagas 1999; 53: 52–57.
Castelo Branco M., França F. H., Medeiros M. A., Leal J. G. T., 2001. Uso de inseticidas para o controle da traça-do-tomateiro e da traça-das-crucíferas: um estudo de caso. Horticultura Brasileira 2001; 19(1): 60 – 63.
Castelo Branco M., França F. H., Villas Boas G. L., 1997. Traça-das-crucíferas (Plutella xylostella). Brasília: Embrapa Hortaliças; 1997, 4p.
CABI. 2015. Plutella xylostella. CABI.org, Invasive Species Compendium. [http://www.cabi.org/isc/datasheet/42318].
Canola Council of Canada, 2021. Diamondback moth. Winnipeg, Canada: Canola Council of Canada. https://www.canolacouncil.org/.../insects/diamondback-moth/
Canola Encyclopedia. Diamondback Moth. Canola Council of Canada, n.d.: [http://www.canolacouncil.org/can.../insects/diamondbackmoth/].
De Bortoli S. A., Vacari A. M., Goulart R. M., Santos R. F., Volpe H. X. L., Ferraudo A. S., 2011. Capacidade reprodutiva e preferência da traça-das-crucíferas para diferentes brassicáceas. Horticultura Brasileira 2011; 29(2): 187 – 192.
Furlong, M. J., Wright, D. J., Dosdall, L. M., 2013. Diamondback moth ecology and management: problems, progress and prospects. Annual Review of Entomology, 58:517-541.
Gurr G. M., Wratten S. D., 2000. Measures of success in biological control. Dordrecht: Kluwer Academic Publishers; 2000, p 430.
Golizadeh A., Karim K., Yaghoub F., Habib A., 2007. Temperature-dependent Development of Diamondback Moth, Plutella Xylostella (Lepidoptera: Plutellidae) on Two Brassicaceous Host Plants. Insect Science 14.4: 309 -316.
Goodwin S., 1979. Changes in the numbers in the parasitoid complex associated with the diamondback moth, Plutella xylostella (L.) (Lepidoptera) in Victoria. Australian Journal of Zoology 1979; 27(6): 981 – 989.
Gong, W., Yan, H.H., Gao, L., Guo, Y.Y., Xue, C.B., 2014. Chlorantraniliprole resistance in the diamondbackmMoth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 107(2): 806 - 814.
Kirsch K., Schmutlerer H., 1988. Low efficacy of a Bacillus thuringiensis (Berl.) formulation in controlling the diamondback moth Plutella xylostella (L.), in the Philippines. Journal of Applied Entomology 1988;105(1-5): 249–255.
Liu S. S., Chen F. Z., Zalucki M. P., 2002. Development and survival of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), at constant and alternating temperatures. Environmental Entomology 31: 1 - 12.
Magalhães G. O., Goulart R. M., Vacari A. M., De Bortoli S. A., 2012. Parasitismo de Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) em diferentes hospedeiros e cores de cartelas. Arquivos do Instituto Biológico 2012; 79(1): 55 – 90.
Myron P. Zalucki, Asad Shabbir, Rehan Silva, David Adamson, Liu ShuSheng, Michael J. Furlong, 2012. Estimating the Economic Cost of One of the World's Major Insect Pests, Plutella xylostella (Lepidoptera: Plutellidae): Just How Long is a Piece of String?, Journal of Economic Entomology, 105(4):1115-1129.
Miles M., 2002. Insect Pest Management II – Etiella, False Wireworm and Diamondback Moth. GRDC Research updates. http://www.grdc.com.au, 2002.
Micic S., 2005. Chemical Control of Insect and Allied Pests of Canola. Farmnote No. 1/2005. Department of Agriculture, South Perth, Western Australia, Australia.
Ridland P. M., Endersby N. M., 2011. Some Australian populations of diamondback moth, Plutella xylostella (L.) show reduced susceptibility to fipronil. In: Srinivasan R., Shelton A. M., Collins H. L. (eds.) Sixth international workshop on management of the diamondback moth and other crucifer insect pests. Nakhon Pathom, Thailand; 2011, 21 – 25.
Roşca I., Oltean I., Mitrea I., Tãlmaciu M., Petanec D. I., Bunescu H. Ş., Rada I., Tãlmaciu N., Stan C., Micu L. M., 2011. Tratat de Entomologie generală şi specială, Editura “Alpha MDN”, Buzău, p. 279 - 296;
Sarfraz M., Dosdall L. M., Keddie B. A., 2006. Diamondback moth-host plant interactions: implications for pest management. Crop Protection 2006; 25(7): 625 – 639.
Sarfraz M., Keddie B. A., 2005. Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lepidoptera: Plutellidae). Journal of Applied Entomology 2005; 129(3): 149 – 157.
Silva - Torres C. S. A., Pontes I. V. A. F., Torres J. B., Barros R., 2010. New records of natural enemies of Plutella xylostella (L.) (Lepidoptera: Plutellidae) in Pernambuco, Brazil. Neotropical Entomology 2010; 39(5): 835 – 838.
Shelton A. M., Badenes-Perez E. 2006. Concepts and applications of trap cropping in pest management. Annual Review of Entomology 51: 285 – 308.
Schroer S., Sulistyanto D., Ehlers R. U., 2005. Control of Plutella xylostella using polymer-fomulated Steinernema carpocapsae and Bacillus thuringiensis in cabbage fields. Journal of Applied Entomology 2005; 129(4): 198 – 204.
Talekar N. S., Shelton A. M., 1993. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology 1993; 38(1): 275 – 301.
Tabashnik B. E., Cushing N. L., Finson N., Johnson M. W., 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 1990; 83(5): 1671 – 1676.
Vacari A. M., De Bortoli S. A., Torres J. B., 2012. Relation between predation by Podisus nigrispinus and developmental phase and density of its prey, Plutella xylostella. Entomologia Experimentalis et Applicata 2012; 145(1): 30 – 37.
Van Lenteren J., Godfray H. C. J., 2005. Europen in science in the Enlightenment and the discovery of the insect parasitoid life cycle in The Netherlands and Great Britain. Biological Control 2005; 32(1): 12 – 24.
Van Lenteren, J., 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 2012; 57(1): 1 – 20.
Venkata G., Reddy P., Guerrero A., 2001. Optimum Timing of Insecticide Applications against Diamondback Moth Plutella Xylostella in Cole Crops Using Threshold Catches in Sex Pheromone Traps. Pest Management Science 57.1: 90 - 94.
Volpe H. X. L., De Bortoli A. S., Thuler R. T., Viana C. L. T. P., Goulart R. M., 2006. Avaliação de características biológicas de Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) criado em três hospedeiros. Arquivos do Instituto Biológico 2006; 73(3): 311 – 315.
Zalucki, M. P., Shabbir, A., Silva, R., Adamson, D., Liu, S. S., Furlong, M. J., 2012. Estimating the economic cost of one of the world's major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string?. Journal of Economic Entomology, 105(4): 1115 - 1129.
Waage J. K., Greathead D. J., 1988. Biological Control: challenges and opportunities. Philosophical Transactions of the Royal Society of London 1988; 318 (1189): 111 – 128.

otilia

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor

În această perioadă, în zonele în care porumbul a început să răsară, își face simțită prezența rățișoara porumbului (Tanymecus dilaticollis gyll).

În Banat, semănatul porumbului este în plină desfășurare. Cu siguranță, în curând vom asista la apariția dăunătorului în culturile răsărite. Din fericire, în Banat, populațiile de Tanymecus dilaticollis nu sunt atât de mari comparativ cu alte zone din țară. Din cauza condițiilor climatice mai răcăroase din vestul țării, Tanymecus dilaticollis este scump la vedere.

Fotografiile din acest material sunt din anii 2021 și 2022. Asta înseamnă că fermierii sunt mai atenți la rotația culturilor. Din păcate, există areale în România unde, datorită tehnologiilor practicate, bazate pe monocultură, populațiile sunt foarte mari și distrug culturile imediat după răsărire. Pentru a putea combate eficient acest periculos dăunător, vă punem la dispoziție informații despre biologia, daunele produse și combaterea corectă a rățișoarei porumbului.

Rățișoara pe floarea-soarelui

Rațișoara pe floarea soarelui 2022

 

Importanța economică, recunoaștere și daune produse

 

Tanymecus dilaticollis este considerat un dăunător periculos al porumbului, fiind prezent în zonele calde din România (Sud și Sud - Est). După Badiu et al., 2019 (citat de Georgescu et al., 2022), datorită modificărilor climatice, rățișoara porumbului își face simțită prezența în ultimii ani și în zonele mai puțin favorabile dezvoltării (Sudul Transilvaniei; Nord - Estul României).

Corpul gărgăriței are lungimea cuprinsă între 5,1 - 9,6 mm, formă alungită, ovală și rostru lung. Culoarea corpului este cenușie - brună. De regulă, adulții apar la suprafața solului aproximativ trei săptămâni după ce temperatura medie a aerului crește la 10° C [Dieckmann, 1983; Roșca et al., 2011].

Cel mai periculos este atacul adulților din timpul răsăritului când plantele pot fi retezate. Aceste plante sunt pierdute, iar dacă frecvența plantelor retezate este mare, culturile sunt întoarse de multe ori. Când insectele rod frunzele în faza de cornet, la deschiderea frunzelor se vor observa perforații circulare cu dispunere transversală [Roșca et al., 2011]. De la 4 - 5 frunze, plantele de porumb nu mai sunt în pericol. În această fenofază, Tanymecus dilaticollis va ataca frunzele pe margini. Atacul se manifestă sub formă de trepte (rosături în formă de U). Astfel de plante vor avea creșteri încetinite care se pot traduce prin pierderi în producție uneori.

437122469 122153063414088675 651733072206333959 n

Dăunătorul atacă în perioadele călduroase, însorite și cu temperaturi medii diurne ce trec de 200C. Sub această temperatură și în prezența precipitațiilor sau timp noros, insecta își încetinește activitatea.

 

Biologia dăunătorului

 

Are o singură generație pe an și iernează în stadiul de adult, în sol, la adâncimi de 40 - 60 cm. Pe măsură ce temperatura din sol crește (de la 40 C), în luna februarie, adulții încep să urce către suprafața solului. La sfârșitul lunii martie și chiar mai devreme uneori, adulții pot fi văzuți la suprafața solului dacă temperatura aerului este de 90 C - 100 C.

Până la răsărirea porumbului, adulții se hrănesc cu plante spontane, cereale. Au o preferință deosebită pentru pălămidă, de exemplu. Când culturile de porumb răsar, rățișoara migrează în acestea, unde începe să se hrănească. De altfel, întreg ciclul de viață al insectei are loc în cultura de porumb (hrănire, împerechere, pontă, iernare) - Roșca et al., 2011. Pe lângă porumb, gărgărițele pot ataca și floarea-soarelui, leguminoasele etc (sunt polifage). La floarea-soarelui poate fi prezent și Tanymecus palliatus (polifag și el). Spre deosebire de Tanymecus dilaticollis, Tanymecus palliatus are două generații/an.

 

Managementul integrat al rățișoarei porumbului

 

Managementul integrat al acestui dăunător constă în îmbinarea echilibrată a măsurilor profilactice (foarte importante) cu cele chimice și biologice.

Monitorizarea dăunătorului este foarte importantă, fiind parte a strategiei de control. Ea poate fi realizată prin efectuarea sondajelor la sol primăvara, la jumătatea lunii martie, în fostele culturi de porumb, mai ales în solele unde au fost densități mari. Prin aceste sondaje se poate estima viitoarea populație a dăunătorului. Din păcate, în prezent nu are cine să execute aceste sondaje deoarece în țara noastră aproape că nu mai există un serviciu de protecția plantelor care să ajute cu adevărat fermierii prin emiterea avertizărilor la timp pentru combaterea unei insecte sau a unui patogen. Modul haotic în care se fac unele lucrări de proteția plantelor ne-au adus în situația de a nu mai putea controla cu adevărat dăunătorii periculoși.

Metode profilactice

Principalele măsuri profilactice (care de cele mai multe ori nu sunt respectate) sunt:

  • Rotația culturilor. Respectarea rotației este foarte importantă și ne-ar putea feri de Tanymecus dilaticollis. Din păcate, noile tehnologii susțin așa numitele „rotații scurte” care, pe termen lung sunt un dezastru. În unele areale din România, monocultura de porumb se practică, cultivându-se pe aceeași solă timp de peste 15 ani (probabil sunt situații excepționale). Rezultatul monoculturii timp de mai mulți ani este înmulțirea excesivă a acestui dăunător;

  • Lucrările de întreținere țin departe dăunătorul;

  • Planta premergătoare este și ea importantă. Dacă este una preferată de dăunător, va lăsa în urmă o rezervă importantă. De aceea, nu cultivați porumb după porumb, după sorg, după sfeclă de zahăr sau floarea-soarelui. Cultivați porumb după grâu, după mazăre, după orz, după in. Trebuie să fiți atenți nu doar la planta premergătoare, ci și la plantele cultivate în vecinătate. Un aspect foarte important. Din păcate, aceste reguli simple nu sunt respectate acum. În viitor, este posibil să asistăm la schimbări în acest sens pentru a putea lupta cu acest dăunător;

  • Data semănatului;

  • Distrugerea buruienilor gazdă este o lucrare importantă care va diminua populațiile dăunătorului. Dăunătorul preferă pălămida dintre buruieni. În anii trecuți am verificat o solă de porumb unde erau vetre de pălămidă roase de Tanymecus dilaticollis.

Inedit. Tanymecus dilaticollis printre florile de rapiță

Inedit. Tanymecus dilaticollis printre florile de rapiță. aprilie 2022

Metode chimice

Cea mai sigură metodă de combatere este tratarea semințelor. Acest tratament protejează foarte bine plantele răsărite. Deoarece neonicotinoidele sunt retrase este tot mai dificil de ținut sub control rățișoara porumbului, mai ales acolo unde se practică monocultura. Din acest motiv se caută soluții.

Pentru 2024, MADR a acordat aprobare pentru tratarea semințelor de porumb și floarea-soarelui cu produsul Nuprid AL 600 FS (imidacloprid). Produsul poate fi folosit în perioada 22 ianuarie - 22 mai 2024 pentru a ține sub control dăunătorii Tanymecus dilaticollis și Agriotes sp. Semințele tratate cu imidacloprid pot fi însămânțate doar în zonele cele mai afectate de dăunătorii mai sus menționați și doar la depășirea PED (prag economic de dăunare). Autorizația temporară poate fi vizualizată pe site-ul ANF (Agenția Națională Fitosanitară): https://www.anfdf.ro/.../aut.../2023/NUPRID_AL600FS_2024.pdf. Pragul economic de dăunare calculat este de 5 adulți/m2.

Alte praguri sau intervale critice de care trebuie să ținem seama sunt legate de densitatea dăunătorului:

  • Pragul minim este sub 0,5 gărgărițe/m2;

  • Pragul mediu de 1 gărgăriță/m2;

  • Pragul de la care trebuie să ne îngrijorăm este de peste 1 gărgăriță/m2 (Baicu, 1978; Hatman et al., 1986).

Tratamente în vegetație

Înainte de efectuarea tratamentelor, culturile de porumb, cât și de floarea-soarelui trebuie verificate cu atenție înainte de răsărire și în timpul răsăritului. Sondajele în culturi se vor face obligatoriu în fenofazele de 1 - 3 frunze (BBCH 9 - 11, răsărire) și 3 - 5 frunze (BBCH 12 - 15). Dacă constatați că aveți atac și densitate numerică mare este bine să faceți un tratament. Tratamentele de după răsărit și chiar în timpul răsăritului și-au dovedit eficacitatea de-a lungul timpului, atunci când insecta a fost depistată la timp (ținându-se seama și de pragul economic de dăunare). Pe solele care sunt puternic infestate se poate face un tratament înainte de semănat (înainte de discuirea ce precede semănatul) - Rădulescu et al., 1967.

În România sunt omologate pentru combaterea în vegetație următoarele substanțe: Cipermetrin; Deltametrin; Lambda - cihalotrin; Acetamiprid [după PESTICIDE 2.24.3.1].

438059292 122153063936088675 8007755373367573766 n

Metode biologice

În agricultura ecologică pot fi utilizate biopreparate pe bază de ulei de neem, spinosad și Bacillus thuringiensis. Într-un studiu, Toader et al. (2020), scot în evidență eficacitatea bună a acestor substanțe. Se arată că, rezultatele cele mai bune s-au obținut când semințele au fost tratate cu ulei de neem, iar în vegetație s-a realizat un tratament cu spinosad. Într-un alt studiu efectuat în Bulgaria au fost testate două bioinsecticide: unul pe bază Beauveria bassiana, iar celălalt pe bază de azadirachtin Neem Azal T/S. Rezultatele experimentului arată că mortalitatea medie a adulților de T. dilaticollis a fost mai ridicată în cazul micoinsecticidului (pe bază de Beauveria bassiana) comparativ cu azadirachtina unde mortalitatea în decurs de 16 zile a fost mai scăzută. Concluzia studiului este că, adulții sunt mai sensibili la B. bassiana decât la azadirachtin (Toshova et al., 2021). Testele efectuate în casa de vegetație de către Georgescu et al. (2022) cu agenții biologici Beauveria bassiana (BbTd, BbTy ), Beuaveria pseudobassiana (BpPA ) și Metarhizium anisopliae (MaF) arată că mortalitatea a fost foarte scăzută. Concluzia studiului a fost că mortalitatea a trecut de 10% doar în urma tratamentelor cu Metarhizium anisopliae (MaF) și Beauveria bassiana (BbTy).

 

Bibliografie

Baicu T., 1978. Tratamente cu volulredus (VR) și volum ultraredus (VUR) în protecția plantelor, Biblioteca agricolă, București.
Badiu, A. F., Iamandei, M., Trotuș, E., Georgescu, E. I. V., 2019. Study concerning Tanymecus sp. populations behavior in some locations from Romania in period 2010-2018. Acta Agricola Romanica, 1(1), 108 - 136.
Dieckmann L., 1983. Contributions to the insect fauna of the GDR: Coleoptera - Curculionidae (Tanymecinae, Leptopiinae, Cleoninae, Tanyrhynchinae, Cossoninae, Raymondionyminae, Bagoinae, Tanysphyrinae). Beitrage Entomologie, Berlin, 33(2): 257 - 381.
Georgescu E., Fătu C., Cana L.,Balaban N., 2022. Research concerning the effectiveness of the entomopathogenic fungi for controlling the maize leaf weevil (Tanymecus dilaticollis Gyll) in the greenhouse conditions,Analele Universităţii din Craiova, seria Agricultură – Montanologie – Cadastru (Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series) Vol. 52/1/2022, 149 - 160.
Hatman M., Bobeș I., Lazăr A., Perju T., Săpunaru T., 1986. Protecția plantelor cultivate, Editura Ceres, București, 294 p.
Rădulescu E., Săvescu A., Alexandri Al., Balaj D., Beratlief C., Bobeș I., Bunea I., Cătuneanu I., Costache N., Docea E., Hamar E., Hulea A., Jacob N., Ionescu M., Manolache F., Olangiu M., Paulian F., Petrescu N., Pop I., Rafailă C., Severin V., Snagoveanu C., 1967. Îndrumător de protecția plantelor, Editura Agro - Silvică, București, 686 p.
Roșca I. et al., 2011. Tratat de Entomologie generală și specială, Editura Alpha MDN Buzău, p. 656.
Toader M., Georgescu E., Ionescu A. M., Șonea C., 2020. Test of some insecticides for Tanymecus dilaticollis Gyll. Control, in organic agriculture conditions. Rom Biotechnol Lett., 25 (6), 2070 - 2078.
Toshova T., Velchev D., Pilarska D., Todorov I., Draganova S., Holuša J., Takov D., 2021. Effect of bioinsecticides on the grey maize weevil Tanymecus dilaticollis. Plant Protect. Sci., 57: 240 – 247.

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor
Vineri, 12 Aprilie 2024 00:00

GAEC 7 pentru 2024, clarificări de la MADR

Ministerul Agriculturii și Dezvoltării Rurale (MADR) a transmis în teritoriu clarificări privind punerea în aplicare a standardului GAEC 7 - Rotaţia culturilor pe terenuri arabile, cu excepţia culturilor care cresc sub apă, în anul de cerere 2024. „Mediul asociativ a făcut nenumărate demersuri pentru obținerea derogării. Este bine că ministerul vine cu clarificări privind modalitatea prin care fermierii pot beneficia de derogarea în cazul GAEC 7. Avem încredere că pentru următorul an agricol, la insistențele noastre, fermierii vor avea o listă de culturi care se autosuportă din punct de vedere agrotehnic/fitotehnic atunci când situația din teren o impune”, a comunicat Alianța pentru Agricultură și Cooperare.

În ceea ce privește condiționalitățile de mediu din cadrul Politicii Agricole Comune, au fost întreprinse numeroase demersuri din partea autorităţilor române şi a organizaţiilor de fermieri pentru acordarea unor derogări la standardele GAEC în anul de cerere 2024 (propuneri de simplificare), din care unele au fost soluţionate parţial (GAEC 8), iar cele mai multe sunt în analiză şi consultare, urmând să fie reglementate în următoarea perioadă (GAEC 5-9), precizează MADR.

Referitor la standardul GAEC 7, în anul de cerere 2024, regula generală spune că se aplică o rotaţie a culturilor pe terenul arabil, cu excepţia culturilor care cresc sub apă. Rotaţia constă în schimbarea culturilor cel puţin o dată pe an (an de cultură) la nivel de parcelă agricolă, cu excepţia culturilor multianuale, a ierburilor şi a altor plante furajere erbacee, a terenurilor lăsate pârloagă şi a culturilor din spaţii protejate (sere şi solarii).

Sunt exceptate de la obligaţia privind rotaţia culturilor pe terenul arabil exploataţiile agricole care îndeplinesc una din următoarele condiţii:

  • Peste 75% din terenul arabil este utilizat pentru producţia de iarbă sau alte plante furajere erbacee, este teren lăsat pârloagă, este cultivat cu culturi de leguminoase sau face obiectul unei combinaţii între aceste utilizări;

  • Peste 75% din suprafaţa agricolă eligibilă este pajişte permanentă, este utilizată pentru producţia de iarbă sau alte plante furaje erbacee sau pentru cultivarea unor culturi aflate sub apă fie pentru o mare parte a anului, fie o mare parte a ciclului de cultură sau face obiectul unei combinaţii între aceste utilizări;

  • Exploataţiile cu o suprafaţă de teren arabil de până la 10 hectare.

Se consideră că exploataţiile înregistrate şi certificate în agricultura ecologică, conform Regulamentului (UE) 2018/848 al Parlamentului European şi al Consiliului, respectă acest standard GAEC.

 

Clarificări tehnice

 

Prin excepţie de la regula generală, una şi aceeaşi specie de plante (cultura principală) poate fi cultivată pe aceeaşi suprafaţă de teren arabil (parcelă agricolă), pe cel mult 50% din suprafaţa arabilă a exploataţiei, astfel:

  • O perioadă de cel mult trei ani consecutivi, cu obligaţia ca între două culturi principale să înfiinţeze o cultură secundară diferită ca specie faţă de cultura principală;

  • O perioadă de cel mult doi ani consecutivi pe suprafeţele pe care cultura principală s-a recoltat toamna târziu (după data de 1 noiembrie) ca urmare a condiţiilor meteorologice nefavorabile, sau înfiinţarea culturii de toamnă/culturii secundare nu a fost posibilă întrucât nu au existat condiţii optime de răsărire şi dezvoltare a plantelor.

Rotaţia culturilor la nivelul exploataţiei agricole include culturile înfiinţate în toamna anului precedent şi culturile înfiinţate în primăvara anului curent depunerii cererii de plată, inclusiv culturile secundare gestionate în mod corespunzător.

Întrucât obligaţiile privind rotaţia culturilor pe terenul arabil - GAEC 7 se aplică începând cu anul de cerere 2024, pentru verificarea respectării acestui standard structura şi amplasarea culturilor pe terenul arabil declarate de fermieri în anul 2023 constituie referinţă pentru verificarea rotaţiei culturilor pe terenul arabil în anul de cerere 2024.

Fermierii  trebuie să notifice Agenția de Plăți și Intervenție pentru Agricultură (APIA) cu privire la aplicarea excepţiei de la regula generală privind rotaţia culturilor pe terenul arabil în vederea respectării obligaţiilor GAEC 7, conform Ordinului nr. 54/570/32/2023, cu modificările şi completările ulterioare.

Culturile principale/secundare înfiinţate şi lucrările executate (cultura, data înfiinţării, data recoltării/desfiinţării/încorporării) trebuie consemnate în Registrul exploataţiei.

Modelele recomandate pentru notificarea APIA cu privire la evidenţa lucrărilor agricole - Registrul exploataţiei şi aplicarea excepţiei de la regula generală pentru rotaţia culturilor - GAEC 7 sunt prevăzute în Ghidul fermierului privind condiţionalitatea - 2024, aprobat prin ordin al ministrului Agriculturii şi Dezvoltării Rurale.

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Știri

Aducem în atenția fermierilor informații importante despre fungul Erysiphe cruciferarum care produce făinarea cruciferelor. Acest fung a fost prezent în zona de vest a României și în toamna 2023. De fapt, a și iernat în aceste culturi.

Condițiile climatice din acest început de primăvară sunt favorabile dezvoltării patogenului Erysiphe cruciferarum, care este prezent de două săptămâni în culturile de rapiță. Informațiile din materialul de față pot ajuta fermierii să prevină infecțiile sau să intervină la momentul optim.

 

Importanța economică a fungului, simptome și daune

 

La nivel mondial, în zonele unde se cultivă intensiv rapița, pe fondul rotațiilor scurte și a condițiilor climatice în schimbare, Erysiphe cruciferarum este considerat un patogen cu importanță economică ridicată [Runno - Paurson et al., 2021]. În România, patogenul apare sporadic și rareori au fost raportate pierderi în producție.

Simptome produse de Erysiphe cruciferarum pe frunze de rapiță, martie 2024

Simptome produse de Erysiphe cruciferarum pe frunze de rapiță în luna martie 2024

Fungul Erysiphe cruciferarum produce pagube în producție în anii în care au loc infecții la nivelul silicvelor și frunzele bolnave cad de pe plante. De regulă, cele mai severe infecții apar atunci când vremea este umedă (umiditatea relativă între 50 - 95%), iar temperaturile sunt cuprinse între 15 - 200C. În astfel de condiții climatice, organele atacate sunt acoperite de un miceliu dens, alb, pulverulent, făinos. O astfel de situație s-a înregistrat în județul Timiș în anul 2019, când făinarea a cuprins toate organele plantei, inclusiv silicvele, producând daune semnificative. Însă, de cele mai multe ori, făinarea nu este dăunătoare rapiței.

Simptomele tipice pot fi recunoscute foarte ușor, deoarece la suprafața organelor atacate apar colonii miceliene de culoare albă, difuze. Miceliile albe pot fi observate pe ambele părți ale frunzelor, de jur împrejurul tulpinilor, lăstarilor, silicvelor. Primele simptome apar pe frunzele bătrâne. Frunzele acoperite de micelii se vor usca. În cazurile grave, frunzele cad la sol (defoliere prematură). Defolierea prematură duce la pierderi în producție.

Micelii albe pe frunză de rapiță. Foto realizată la sfârșit de februarie 2024 

Foto sfârșit februarie 2024. Micelii albe pe frunză de rapiță

Plantele de rapiță trebuie controlate pe întreaga perioadă de vegetație, mai ales în primăverile umede. Pe măsură ce patogenul se dezvoltă, miceliile albe sau așa numitele pete pâsloase devin mai dense. Aspectul făinos (prăfos sau pulverulent) apare atunci când miceliul sporulează. Față de alte făinări unde sporii (conidiile) sunt înlănțuiți, la Erysiphe cruciferarum conidiile nu sunt înlănțuite [Docea & Severin, 1990]. Pe măsură ce petele păsloase îmbătrânesc, capătă culoare cenușie și pot fi observate corpurile fructifere numite cleistotecii. Infecțiile primare sunt realizate de către ascosporii din ascele protejate de cleistotecie. Infecțiile secundare sunt făcute de către conidii.

La hibrizii toleranți sau rezistenți poate fi observată o reacție de apărare (am observat și eu acest aspect). La acești hibrizi, miceliile (pete pâsloase) sunt de dimensiuni mai mici și au culoare cenușie albicioasă. Sub micelii, țesuturile au culoare negricioasă [Koike et al., 2007].

Micelii albe pe pețiol, martie 2024

Micelii albe pe pețiol. Martie 202

 

Biologia și epidemiologia patogenului

 

Este important ca fermierii să cunoască măcar câteva aspecte despre biologia și condițiile climatice preferate de acest patogen, astfel încât vor putea preveni din timp instalarea infecțiilor.

Erysiphe cruciferarum este un parazit obligatoriu, supraviețuind peste anotimpul rece pe resturile vegetale sau în sol sub formă de cleistotecii cu asce și ascospori. De asemenea, poate ierna și pe culturile de rapiță de toamnă, cât și pe samulastră (sub formă de micelii) [Koike et al., 2007]. Când condițiile de mediu sunt favorabile (temperaturi de 15 - 250C) cleistoteciile eliberează ascele care conțin ascospori, aceștia fiind responsabili de realizarea infecțiilor primare. Cu ajutorul vântului ei ajung pe suprafața țesuturilor vegetale, germinează și produc infecția. După realizarea infecțiilor primare, în miceliile albe, difuze care apar la suprafața organelor atacate se vor forma conidiile responsabile de realizarea infecțiilor secundare repetate. La sfârșitul perioadei de vegetație în pâsla miceliană se vor forma cleistoteciile, formă sub care fungul iernează [Schwartz & Gent, 2004].

Martie 2024

Foto martie 2024 2

Infecțiile pot fi severe atunci când temperaturile sunt cuprinse în intervalul 22-27°C, iar umiditatea relativă este scăzută în timpul zilei și ridicată în timpul nopții.

Erysiphe cruciferarum infectează buruienile (gama de plante gazdă este largă) trecând cu ușurință pe plantele cultivate. De aceea, culturile nu trebuie să fie îmburuienate.

 

Managementul integrat al făinării rapiței

 

Metodele profilactice sunt foarte importante în strategiile de combatere.

Fermierii ar trebui să fie atenți la următoarele măsuri:

  • Respectarea rotației - rotația de trei ani este indicată;

  • Eliminarea plantelor gazdă (ar trebui să prevină apariția bolii);

  • Cultivarea de hibrizi rezistenți;

  • Evitarea stresului cauzat de secetă;

  • Adunarea resturilor vegetale (în cazul unor infecții severe);

  • Fertilizarea echilibrată;

  • Executarea arăturilor adânci de toamnă în anii când infecțiile au fost masive [Docea & Severin, 1990].

Martie 2024

Foto martie 2024

Metodele chimice sunt predominante, din păcate. Tratamentele chimice se impun, mai ales atunci când infecțiile apar când silicvele sunt formate. În primăverile răcoroase și umede se recomandă efectuarea unui tratament preventiv.

Fungicidele omologate în România pentru combaterea acestui patogen sunt pe bază de: Tebuconazol; Protioconazol (se aplică preventiv, la apariția primelor simptome); Boscalid + metconazol (după APLICAȚIA PESTICIDE 2.24.2.2).

Respectați dozele, momentele optime de aplicare și timpii de pauză (care sunt destul de mari, între 35 - 56 zile).

Metode biologice

Combaterea acestui patogen cu ajutorul agenților biologici este de interes în prezent. Biofungicidul pe bază de Ampelomyces quisqualis (AQ10), o ciupercă antagonistă, poate fi utilizat cu succes în combaterea făinării rapiței. AQ10 se aplică ca tratament preventiv, nu curativ. AQ10 trebuie amestecat cu un ulei mineral sau cu un surfactant siliconic. Se recomandă ca tratamentele să fie făcute dimineața devreme sau seara târziu, iar plantele să fie acoperite complet de soluție. Această recomandare este valabilă pentru toți agenții biologici utilizați în combaterea bolilor și dăunătorilor. Momentul aplicării este foarte important deoarece de el depinde eficacitatea tratamentelor [Schwartz & Gent, 2015].

Martie 2024

Foto martie 2024 1

 

Bibliografie

1.Docea E., Severin V., 1990. Ghid pentru recunoașterea și combaterea bolilor plantelor agricole, Editura Ceres, Întreprinderea poligrafică ”Oltenia”, 320 p.
2.Eve Runno-Paurson, Peeter Lääniste, Viacheslav Eremeev, Liina Edesi, Luule Metspalu, Astrid Kännaste & Ülo Niinemets, (2021). Powdery mildew (Erysiphe cruciferarum) evaluation on oilseed rape and alternative cruciferous oilseed crops in the northern Baltic region in unusually warm growing seasons, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71:6, 443 - 452.
3.Koike, S. T., Gladders, P., Paulus, A. O. (2007). Vegetable Diseases: A Color Handbook. 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA: Gulf Professional Publishing. p. 168. ISBN 0-12-373675-7.
4.Runno-Paurson Eve, Peeter Lääniste, Viacheslav Eremeev, Liina Edesi, Luule Metspalu, Astrid Kännaste & Ülo Niinemets, (2021). Powdery mildew (Erysiphe cruciferarum) evaluation on oilseed rape and alternative cruciferous oilseed crops in the northern Baltic region in unusually warm growing seasons, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71:6, 443 - 452.
5. Schwartz, H. F., Gent, D. H. (December 31, 2004). "Canola & Mustard- Powdery Mildew" (PDF). Highplains IPM. Retrieved October 21, 2015.
 
La Stațiunea Didactică Timișoara - USVT. La 22 martie 2024 făinarea este prezentă pe frunzele bazale ale rapiței
 
Prin rapița de la Stațiunea Didactică Timișoara USVT. La 22.03.2024 făinarea este prezentă pe frunzele bazale

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor
Pagina 1 din 2

newsletter rf

Publicitate

ATS25 300X250

21C0027COMINB CaseIH Puma 185 240 StageV AD A4 FIN ro web 300x200

T7 S 300x250 PX

Banner Profesional agromedia RF 300x250 px

GAL Danubius Ialomita Braila

GAL Napris

Revista