ciuperca - REVISTA FERMIERULUI

Aduc în atenția fermierilor fungul Fusarium graminearum care produce boala numită „albirea și înroșirea spicelor”. În zonele din țară unde au căzut precipitații în perioada înfloritului, iar temperaturile au fost favorabile realizării infecțiilor, este posibil să apară fuzarioza.

Schimbările climatice din ultimii ani au influențat pozitiv dezvoltarea fungilor din genul Fusarium, favorizând apariția epidemiilor la grâu. Cea mai recentă epidemie de Fusarium la cerealele din Câmpia Banatului (și nu numai) a fost în anul 2019, an în care calitatea a fost foarte scăzută, în principal din cauza prezenței micotoxinelor fusariene în cantități care au depășit limitele permise.

Pierderile produse de F. graminearum la grâu în anii epidemici pot fi uriașe. Pagubele se datorează în mare parte sterilității spicelor, MMB-ului scăzut (masa a o mie de boabe), dar mai ales prezenței micotoxinelor în cariopse.

Fusarium graminearum este un patogen deosebit de periculos al cerealelor deoarece produce micotoxine încadrate în două clase chimice: trichothecene și zearalenon. Dintre trichothecene amintim: vomitoxina (deoxynivalenol sau DON), micotoxina T – 2, diacetoxyscirpenol (DAS), monoacetoxyscirpenol (MAS) şi nivalenol. Aceste micotoxine sunt iritanţi puternici şi au fost asociate atunci când sunt consumate cu simptome ca: vomă, refuzul hranei şi posibil ulcer gastric. Cele mai semnificative trichothecene sunt toxina T – 2 şi deoxynivalenolul, care apar în cantităţi destul de mari la cereale. Zearalenonul face parte din a doua clasă chimică de toxine produse de F. graminearum. Când este consumat de animale este asociat cu probleme de reproducere, cum sunt: avorturile, căldurile false, reabsorbţia fetusului şi a mumiilor [Cotuna & Popescu, 2009].

Fusarium și Alternaria sp. (foto din anul 2023)

Foto din anul 2023

În Câmpia Banatului, în anul 2023 au existat lanuri infectate, însă incidența spicelor atacate a fost mai scăzută, la fel și intensitatea. De la epidemia de Fusarium graminearum din anul 2019, putem aprecia că acest patogen nu a mai creat probleme deosebite în Banat, deoarece nu s-au întrunit condițiile climatice (precipitații continue și temperaturi moderate). Vom vedea ce va aduce această primăvară.

Prin intermediul acestui articol venim în sprijinul dumneavoastră cu informații despre tabloul simptomatic al bolii, biologia, epidemiologia și „combaterea” patogenului Fusarium graminearum. Aceste informații vă vor ajuta în viitor să vă protejați din timp culturile.

Foto din anii trecuți

 

Micotoxinele fusariene, pericol pentru sănătatea oamenilor și animalelor

 

În fuzarioza grâului pot fi implicate mai multe specii de Fusarium. Studii numeroase arată că fuzarioza spicelor de grâu poate fi produsă de Fusarium graminearum, Fusarium culmorum, Fusarium nivale, Fusarium poae, Fusarium sporotrichioides [Miller, 1994; Lidell, 2003; Wegulo, 2012; Zrcková et al., 2019]. Dintre speciile menționate, Fusarium graminearum este prezentă în regiunile temperate cu climat mai cald, comparativ cu Fusarium culmorum care preferă zonele mai reci [Wang & Miller, 1988; Snijders & Perkowski, 1990; Miller et al., 1991; Miller, 2002]. În Câmpia Banatului, specia predominantă care produce infecții la spic este F. graminearum [Cotuna et al., 2013; Cotuna et al., 2022].

Dintre speciile de Fusarium producătoare de DON, F. graminearum este considerată cea mai importantă [Paraschivu et al., 2014; Paul et al., 2005; Anon, 1993c]. Deoxynivalenolul (DON) aparține familiei chimice de sequiterpene, fiind derivat din trichodiene (precursorul biochimic al tuturor trichothecenelor). DON - ul este foarte stabil din punct de vedere chimic. Semințele infectate de Fusarium conțin întotdeauna și micotoxine fusariene. Dintre acestea, DON - ul a fost găsit frecvent în cantități mari [McMullen et al., 1997]. După Wegulo (2012), cu cât procentul de boabe fusariate este mai mare cu atât și cantitatea de DON va fi mai ridicată. De altfel, marea majoritate a cercetătorilor corelează prezența deoxynivalenolului în cariopse cu intensitatea atacului din câmp și procentul de boabe fusariate [Cowger & Arellano, 2013]. Dacă ajunge în hrana oamenilor, deoxynivalenolul poate produce intoxicații alimentare, care se manifestă prin greață, vărsături, diaree, dureri de cap, dureri abdominale, febră etc [Lidell, 2003; Sobrova et al., 2010].

Până în acest an, limita maximă de DON admisă de legislația europeană în cerealele neprocesate era de 1250 ppb (1,25 ppm) [Commission Regulation (EC) No 1881/2006].

În Regulamentul (UE) 2024/1022 al CE din 8 aprilie 2024, de modificare a Regulamentului (UE) 2023/915 cu privire la nivelurile maxime de deoxinivalenol în produsele alimentare, limita maximă de DON permisă la cerealele neprocesate a scăzut la 1000 ppb. Noile reglementări intră în vigoare începând cu data de iulie 2024 și nu se aplică retroactiv.

grau intro cotuna

A doua micotoxină importantă produsă de Fusarium graminearum este „toxina T - 2”, care apare în cantități semnificative la cereale, alături de deoxynivalenol [Annon, 1993b]. Intoxicația se manifestă prin simptome de febră, vomă, convulsii, anemie, inflamații acute ale aparatului digestiv.

Alt metabolit toxic produs de fungul F. graminearum este zearalenona (ZON). Zearalenona apare la grâul fusariat alături de DON și T - 2. Această toxină afectează eficiența reproductivă, nu și pofta de mâncare. Sindromul estrogenic ce apare în urma ingerării de hrană contaminată se caracterizează prin: umflarea glandelor mamare, hipertrofia uterină, umflarea vulvei, infertilitate [Marasas, 1991]. Cei mai sensibili sunt porcii.

Limitele maxime admise de ZON și T - 2 în grâul neprocesat sunt de 100 ppb. Cele trei micotoxine, DON, ZON și T - 2 nu sunt considerate carcinogenice. Zearalenona nu se transmite prin lapte sau alte produse lactate.

 

Factorii de risc pentru apariția infecțiilor

 

Risc crescut de infecții cu Fusarium graminearum se înregistrează în anii când se întrunesc următorii factori:

  • Temperaturi optime pentru realizarea infecțiilor. După Anderson (1948), temperatura optimă pentru realizarea infecțiilor este de 250C, indiferent de cât timp durează umezeala. După De Wolf et al. (2003), contează durata în ore a temperaturilor cuprinse între 15 - 300C, înainte cu șapte zile de înflorit. În condiții de vreme caldă cu temperaturi cuprinse între 25 - 300C și umiditate continuă, simptomele de Fusarium la spic (albire) pot apărea în 2 - 4 zile de la realizarea infecției [Wegulo, 2012]. Astfel, o cultură aparent sănătoasă, brusc poate să prezinte simptome de boală;

  • Precipitațiile. Precipitațiile continue dinainte de înflorit și în timpul dezvoltării cariopselor favorizează acumularea de cantități mari de DON în cereale. Cantitățile de precipitații din lunile mai și iunie predispun cerealele la infecția cu Fusarium. Perioadele în care grâul poate fi infectat sunt la înflorit sau imediat după înflorit [Hernandez Nopsa et al., 2012; Wegulo, 2012]. De Wolf et al. (2003) arată importanța duratei în ore a precipitațiilor înainte cu șapte zile de înflorit;

  • Umiditatea relativă a aerului (UR%). Cu cât expunerea la umezeală este mai îndelungată, intensitatea atacului la spic crește. Chandelier et al. (2011), într-un studiu efectuat pe o perioadă de șapte ani, arată o corelație puternică între umiditatea relativă medie de peste 80% și cantitatea de DON acumulată în cariopse;

  • Tehnologiile practicate în prezent de către fermieri pot influența pozitiv infecțiile cu Fusarium, cât și acumularea de micotoxine. Sistemele de cultivare „minimum tillage” sau „no tillage” (utile pentru conservarea solului), densitățile mari practicate, lipsa rotației, au dus la creșterea sursei de inocul în resturile vegetale ce rămân la suprafața solului [Unger, 1994; Watkins, 1994; Matei et al., 2010];

  • Soiurile sensibile.

 

Recunoașterea simptomelor

 

Fusarium graminearum poate ataca plantele de cereale păioase pe tot parcursul perioadei de vegetație, dacă condițiile climatice preferate se întrunesc.

Tabloul simptomatic al bolii se prezintă după cum urmează:

  • Plăntuţele care provin din seminţe infectate se îngălbenesc şi în cele din urmă putrezesc;

  • În faza de înfrăţire, rădăcinile şi coletul sunt brunificate din cauza infecţiilor realizate de miceliul şi clamidosporii din sol. Plantele atacate continuă să vegeteze slab şi vor forma spice sterile;

  • Forma cea mai gravă de atac este după înspicare. Spicele, iniţial se albesc parţial (câteva spiculeţe) sau total, apoi se înroşesc şi se acoperă cu un înveliş micelian, alb – roz sau alb – rubiniu, uneori portocaliu - somon, pe care se observă sporodochiile ciupercii (forma imperfectă). Pe spicele înroşite (pe palee, ariste sau boabe) se observă puncte negre care sunt periteciile ciupercii (forma perfectă). Cariopsele infectate sau fuzariate rămân mici, zbârcite, cenuşii sau rozii iar germinaţia şi puterea de străbatere va fi slabă [Popescu, 2005].

Foto din anul 2019

 

Ciclul de viață

 

Fusarium graminearum este agentul etiologic dominant al fuzariozei spicului la cerealele păioase cultivate în România. Ciuperca rezistă în resturile de plante vegetale, în sol și în semințe. Vremea umedă prelungită în timpul perioadei de vegetație favorizează creșterea și sporularea ciupercii. Sporii ciupercii sunt purtați de vânt și de picăturile de apă pe spicele de grâu. Grâul este susceptibil a fi infectat în perioada înfloritului și când cariopsele încep să se formeze [Popescu, 2005].

Fusarium graminearum rezistă în sol sub formă de miceliu saprofit, clamidospori şi peritecii. O sursă importantă de transmitere este sămânţa infectată din care ies plăntuţe bolnave care mor (infecţie sistemică). Infecţiile primare pot fi realizate de micelii sau clamidosporii din sol dar şi de ascosporii şi conidiile care ajung pe părţile aeriene ale plantelor. După realizarea infecției, miceliul care se dezvoltă intracelular va intra în sporogeneză, formându-se astfel conidiile ce asigură infecţiile secundare (foarte păgubitoare mai ales în perioada înfloritului) – Popescu, 2005.

Dezvoltarea acestui patogen este favorizată de vremea umedă (umiditatea aerului peste 90%, prezenţa ploilor) şi de temperaturile moderate (peste 200C) şi apoi de factorii agrofitotehnici (monocultura, solurile acide, azotul în exces, semănatul des, sensibilitatea soiurilor).

Infecţia continuă şi în depozite. Contaminarea cu micotoxinele produse de F. graminearum este asociată cu amânarea excesivă a recoltatului şi cu depozitarea cerealelor umede. Acumularea de micotoxine este masivă la temperaturi de 21 – 290C şi la o umiditate a boabelor de peste 20%.

 

Managementul integrat al fuzariozei grâului

 

Putem combate sau nu fuzarioza la cereale? O întrebare la care este greu de răspuns. Măsurile din cadrul sistemului de combatere integrată pot ține sub control destul de puțin fuzarioza dar nu întotdeauna ne feresc de infecții. De ce? Pentru că orice măsuri am respecta, condițiile climatice sunt esențiale în realizarea infecțiilor.

Atac la cariopse. Stanga, cariopse fusariate, dreapta cariopsă aparent sănătoasă (foto din anul 2023) 

Foto din anul 2023. Atac la cariopse. Stanga cariopse fusariate dreapta cariopsă aparent sănătoasă

Măsuri profilactice

Măsurile de profilaxie sunt foarte importante dar nu ne feresc de infecții dacă condițiile climatice sunt favorabile patogeniei. Totuși, respectarea lor ne poate ajuta, în sensul că vom avea o rezervă mai mică în sol de inocul. În acest sens, este bine ca fermierii să respecte următoarele măsuri:

  • Cultivarea de soiuri adaptate climei locale şi zonei unde vor fi cultivate.

  • Cultivarea unor soiuri care tolerează mai bine patogenul. Despre rezistență totală nu putem discuta. Rezistența soiurilor de grâu la infecția cu Fusarium este foarte importantă și intens studiată astăzi. Sunt descrise până acum cinci tipuri de rezistență: tipul I - rezistența la infecția inițială (reacții de apărare); tipul II - rezistența la răspândirea agentului patogen în țesutul infectat; tipul III - rezistența la infecție a semințelor; tipul IV - toleranța la infecție; tipul V - rezistența la micotoxine [Mesterhazy, 1995; Ma et al., 2009; Kosaka et al., 2015; Zhang et al., 2020]. După Bai & Shaner (2004), crearea unor soiuri cu rezistență la Fusarium poate fi o strategie foarte bună pentru controlul acestei boli. În SUA, preocupări de ameliorare a grâului pentru rezistența la Fusarium sp. există de prin anul 1929. Un studiu din 1963 arată că, după un ciclu de cercetari de nouă ani, toate plantele de grâu pot fi infectate în proporție mai mare sau mai mică [Schroeder & Christensen, 1963].

  • Controlul dăunătorilor în lanurile de cereale nu trebuie neglijat, deoarece se ştie că favorizează infecţiile cu Fusarium graminearum.

  • Densităţile mari trebuie evitate.

  • Fertilizarea cu azot şi alte substanţe nutritive să se facă în mod echilibrat.

  • Rotaţia culturilor trebuie respectată, deoarece s-a constatat că reduce riscul de contaminare cu micotoxine produse de ciuperca Fusarium graminearum.

  • Resturile vegetale să fie îngropate prin intermediul arăturii.

  • Recoltarea la timp, uscarea la 24 de ore de la recoltare şi supravegherea umidităţii boabelor la depozitare [Cotuna & Popescu, 2009].

Dacă aceste măsuri sunt respectate, sursa de inocul va fi diminuată, NU şi eliminată.

grau fusarium

Măsuri chimice

În funcție de condițiile climatice, tratamentele chimice pot fi eficiente sau nu. Tratarea semințelor înainte de semănat este esențială în prevenirea primelor infecții.

În România sunt omologate următoarele substanțe pentru tratarea semințelor de cereale păioase: Triticonazol; Tebuconazol; Fludioxonil + teflutrin (insecticid); Fludioxonil + protioconazol + tebuconazol; Fludioxonil; Difenoconazol + fludioxonil; Difenoconazol + fludioxonil + tebuconazol; Difenoconazol; Fludioxonil + fluxapyroxad + triticonazol; Ipconazol; Fluxapyroxad; Fludioxonil + sedaxan; Difenoconazol + fludioxonil + sedaxan; Bixafen + tebuconazol [după Aplicația PESTICIDE 2.24.3.1, 2024].

Tratamentele din vegetație

La modul general, în literatura de specialitate se recomandă două tratamente în timpul sezonului de vegetație, după cum urmează: primul tratament la începutul înspicării; iar al doilea tratament la sfârșitul înfloritului.

Studiile efectuate pentru stabilirea momentelor optime de efectuare a tratamentelor (când au eficacitate maximă) recomandă următoarea strategie:

  • Tratament la BBCH 59 - când grâul nu este înflorit - eficiență ridicată.

  • Tratament la BBCH 63 - 65 - început înflorit, moment optim pentru bolile spicului în general.

  • Tratament la BBCH 69 - sfârșit înflorit - nu se recomandă (prea târziu pentru tratament) - se poate aplica doar în situații grave cu risc de infecții secundare când sunt ploi continue după înflorit.

Pentru tratamentele în vegetație sunt omologate următoarele substanțe: Azoxistrobin; Tebuconazol; Metconazol; Azoxistrobin + protioconazol; Protioconazol + tebuconazol; Azoxistrobin + tebuconazol; Kresoxim - metil + mefentrifluconazol; Benzovindiflupir + protioconazol; Benzovindiflupir; Protioconazol; Protioconazol + spiroxamină + tebuconazol; Ciprodinil; Fenpropidin; Difenoconazol + tebuconazol; Tebuconazol + trifloxistrobin; Protioconazol + spiroxamină + trifloxistrobin; Protioconazol + trifloxistrobin; Boscalid + protioconazol; Fluxapyroxad + piraclostrobin; Mefentrifluconazol + piraclostrobin; Bromuconazol + tebuconazol; Proquinazid + protioconazol [după Aplicația PESTICIDE 2.24.3.1, 2024].

Fungicidele omologate trebuie utilizate doar în dozele recomandate de producători. Nu măriți dozele. Mărirea dozelor duce la apariția fenomenului de rezistență, iar rezistența la pesticide este o problemă mare a agriculturii moderne.

Tratamentele trebuie efectuate doar în zilele în care nu bate vântul și temperaturile nu sunt ridicate. Dacă după efectuarea tratamentelor intervin ploi, va trebui să repetați. Este foarte important să fie respectați timpii de pauză până la recoltat. Fungicidele utilizate la cereale au timpi de pauză destul de mari, începând de la 35 până la 50 zile.

Măsuri biologice

Combaterea biologică este foarte rar utilizată în combaterea fuzariozei la grâu și nu numai. De interes sunt antibioticele produse de bacterii (Bacillus subtilis) și fungi (Penicillium, Trichoderma, Trichothecium): fitobacteriomicina, nifimicina, fitoflavina, lavendromicina, trichotecina [Popescu, 2005].

În prezent, există un produs biologic omologat în România pe bază de Pythium oligandrum (M1 x 106 oospores/g Pythium oligandrum) pentru tratarea fuzariozei în perioada de vegetație. Tratamentele cu agenți biologici trebuie efectuate preventiv, nu curativ.

De reținut, recoltele contaminate cu micotoxine fusariene nu pot fi destinate nici pentru panificaţie, nici pentru hrana animalelor, din cauza intoxicaţiilor grave pe care le produc.

 

Bibliografie

Andersen, A. L., 1948. The development of Gibberella zeae head blight of wheat. Phytopathology, 38, 599 – 611.
Anon, 1993b. In IARC Monographs on the evaluation of carcinogenic risk to humans, vol. 56, International Agency for Research an Cancer, Lyon, France, pp. 467 - 488.
Anon, 1993c. In IARC Monographs on the evaluation of carcinogenic risk to humans, vol. 56, International Agency for Research an Cancer, Lyon, France, pp. 397 - 444.
Bai, G., Shaner, G., 2004. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 42: 135 - 161.
Chandelier, A., Nimal, C., André, F., Planchon, V., Oger, R., 2011. Fusarium species and DON contamination associated with head blight in winter wheat over a 7-year period 92003–2009) in Belgium. Eur. J. Plant Pathol., 130, 403 – 414.
Cotuna, O., Sărățeanu, V., Durău, C., Paraschivu, M., Rusalin, G., 2013. Resistance reaction of some winter wheat genotipes to the attack of Fusarium graminearum L. Schw. in the climatic conditions of Banat plain, Research Journal of Agricultural Science, 45 (1), p. 117 - 122.
Cotuna O., Paraschivu M., Sărăţeanu V., Partal E., Durău C. C., 2022. Impact of Fusarium head blight epidemics on the mycotoxins’ accumulation in winter wheat grains, Emirates Journal of Food and Agriculture, 34 (11), 949 - 962.
Cotuna O., Popescu G., 2009. Securitatea și calitatea produselor vegetale, siguranța vieții, Editura Mirton, Timișoara, 327 p..
Cowger, C., Arellano, C., 2013. Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes. Phytopathology 103: 460 - 471.
De Wolf, E. D., Madden, L. V., Lipps, P. E., 2003. Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology, 93, 428 – 435.
Hernandez Nopsa, J., Baenziger, P. S., Eskridge, K. M., Peiris, K. H. S., Dowell, F. E., Harris, S. D., Wegulo, S. N., 2012. Differential accumulation of deoxynivalenol in two winter wheat cultivars varying in FHB phenotype response under field conditions. Can. J. Plant Pathol. 34, 380 – 389.
Kosaka, A., Manickavelu, A., Kajihara, D., Nakagawa, H., Ban, T., 2015. Altered gene expression profiles of wheat genotypes against Fusarium head blight. Toxins 72: 604 - 620.
Liddell, C. M., 2003. Systematics of Fusarium species and allies associated with Fusarium head blight. In Fusarium Head Blight of Wheat and Barley; Leonard, K. J., Bushnell, W. R., Eds.; American Phytopathological Society: St. Paul, MN, USA, 2003; pp. 35 – 43.
Ma, H., Ge, H., Zhang, X., Lu, W., Yu, D., Chen, H., Chen, J., 2009. Resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese barley. J. Phytopathology, 157, 166 – 171.
Marasas, W. F. O., 1991. In Mycotoxins and Animal Foods (J. E., Smith, and R. S., Henderson, editors), CRC Press, Inc., pp. 119 - 139.
Matei, G., Păunescu, G., Imbrea, F., Roşculete E., Roşculete, C., 2010. Rotation and fertilization - factors in increasing wheat production and improving the agro productive features of the brown reddish soil from central area of Oltenia, Research Jurnal Of Agricultural Science, Vol. 42 (1). USAMVB Timișoara, pag. 182 - 189.
Mesterhazy, A. I., 1995. Types and components of resistance to Fusarium head blight of wheat. Plant breeding 114 5: 377 - 386.
McMullen, M., Jones, R., Gallenberg, D., 1997. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis. 81:1340 - 1348.
Miller, J. D., Greenhalgh, R., Wang, Y., Lu, M., 1991. Trichothecene chemotypes of three Fusarium species. Mycologia, 83, 121 – 130.
Miller, J. D., 1994. Epidemiology of Fusarium ear diseases of cereals. In Mycotoxins in Grain. Compounds Other than Aflatoxin; Miller, J. D., Trenholm, H. L., Eds.; Eagan Press: St. Paul, MN, USA, 1994; pp. 19 – 36.
Miller, J. D., 2002. Aspects of the ecology of Fusarium toxins in cereals. In Mycotoxins and Food Safety; DeVries, J. W., Trucksess, M. W., Jackson, L. S, Eds.; Kluwer Academic/Plenum Publishers: New York, USA, pp. 19 – 28.
Paraschivu, M., Cotuna O., Paraschivu M., 2014. Integrated disease management of Fusarium head blight, a sustainable option for wheat growers worldwide, Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series, vol. XLIV, p. 183 - 187.
Paul, P. A., Lipps, P. E., Madden, L. V., 2005. Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain: a meta-analysis. Phytopathology 95:1225 - 1236.
Popescu G., 2005. Tratat de patologia plantelor, vol. II Agricultură, Editura Eurobit, 341 p..
Snijders, C. H. A., Perkowski, J., 1990. Effects of head blight caused by Fusarium culmorum on toxin content and weight of wheat kernels. Phytopathology, 80, 566 – 570.
Sobrova, P., Adam, V., Vasatkova, A., Beklova, M., Zeman, L., Kizek, R., 2010. Deoxynivalenol and its toxicity. Interdisc. Toxicol., 3, 94 – 99.
Schroeder, H. W., Christensen, J. J., 1963. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53 7, 1: 831 - 838.
Unger, P. W., 1994. Residue production and uses–an introduction to managing agricultural residues. In Managing Agricultural Residues; Unger, P. W., Ed., Lewis Publishers: Boca Raton, F. L., USA, pp. 1 – 6.
Zhang, W., Boyle K., Brûlé - Babel, A. L., Fedak, G., Gao, P., Robleh Djama, Z., Polley, B., Cuthbert R. D., Randhawa, H. S., Jiang, F., Eudes, F., Fobert, P. R., 2020. Genetic Characterization of Multiple Components Contributing to Fusarium Head Blight Resistance of FL62R1, a Canadian Bread Wheat Developed Using Systemic Breeding. Front. Plant Sci. 11:580833.
Zrcková, M., Svobodová - Leišová, L., Bucur, D., Capouchova, I., Konvalina, P., Pazderu, K., Janovská D., 2019. Occurence of Fusarium spp. In hulls and grains of different wheat species, Romanian Agricultural Research, No. 36, 173 - 185.
Watkins, J. E., Boosalis, M. G., 1994. Plant disease incidence as influenced by conservation tillage systems. In Managing Agricultural Residues; Unger, P. W., Ed. Lewis Publishers: Boca Raton, F. L., USA, 261 – 283.
Wegulo, S. N., 2012. Factors influencing Deoxynivalenol accumulation in small grain cereals, Toxins, 4, 1157 - 1180.
Wang, Y. Z. and Miller, J. D., 1988. Screening techniques and sources of resistance to fusarium head blight. In: A. R., Khlatt, (ed), Wheat production: constraints in tropical environments. CIMMYT, Mexico. 239 - 250.
***. 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.
***. 2013. Commission Recommendation 2013/165/EU of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products.
***. 2024. REGULAMENTUL (UE) 2024/1022 AL COMISIEI din 8 aprilie 2024 de modificare a Regulamentului (UE) 2023/915 în ceea ce privește nivelurile maxime de deoxinivalenol în produse alimentare, Jurnalul Oficial al Uniunii Europene, 9.4.2024, ELI: http://data.europa.eu/eli/reg/2024/1022/oj.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna (realizate în anii trecuți)

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor

Fungul Puccinia striiformis produce boala numită „rugina galbenă”. Pe fondul climatic actual (vreme umedă și răcoroasă) și a sursei de inocul ridicată din anul trecut, primele infecții produse de Puccinia striiformis sunt evidente în lanurile de grâu, mai ales la soiurile sensibile. Este posibil ca și în acest an să ne confruntăm cu epidemii de rugină galbenă în unele zone din țară? Vom vedea.

În anul 2023, primele infecții au apărut la grâu în ultima decadă a lunii aprilie. Se pare că istoria se repetă. În 2024, în ultima decadă a lunii aprilie observăm primele pustule de rugină galbenă. Asta înseamnă că infecția s-a realizat mai devreme, adică în decada a doua a lunii aprilie 2024. Dacă vremea răcoroasă și umedă se va menține, posibil ca acest patogen să producă pagube importante în producție, așa cum s-a întâmplat și în anul 2023.

De aceea, vă recomandăm să verificați lanurile de grâu și orz, iar acolo unde constatați că PED-ul este depășit interveniți cu tratamente. Pentru gestionarea corectă a patogenului vă punem la dispoziție informații despre biologia, epidemiologia și combaterea acestui patogen periculos.

 

Factorii de risc pentru apariția infecțiilor

 

Riscul de apariție a epidemiilor de rugină galbenă crește când se întrunesc următorii factori:

  • Climatul răcoros;

  • Precipitațile abundente din perioada de vegetație;

  • Soiurile sensibile;

  • Samulastra;

  • Iernile ușoare;

  • Microclimatul umed;

  • Vânturile care bat din nord - vest și sud - vest (pot aduce uredospori de la distanță mai mare) - Martinez - Espinoza, 2008; Popescu, 2005.

Puccinia striiformis, infecție la soiul Miranda (Mănăștur, jud. Arad, 29.04.2024)

Puccinia striiformis infecție la soiul Mirandajpg

În ultima decadă a lunii aprilie 2024, acești factori sunt întruniți, iar patogenul este prezent în unele culturi de cereale din vestul țării, dar și în alte zone din România.

 

Importanța economică a bolii

 

În condițiile climatice ale României, rugina galbenă nu apare în fiecare an, ci doar în anii în care în timpul primăverii se înregistrează temperaturi scăzute (10 - 150C) și cantități mai mari de precipitații. Amintesc anul 2018, când în vestul României rugina galbenă a produs pagube la grâu și triticale. În acel an, infecțiile au apărut după înspicat, iar pagubele nu au fost mari. Nu la fel putem spune despre anul 2023 (la cinci ani de la infecțiile din 2018) când rugina galbenă a produs infecții încă din luna aprilie. Condițiile climatice ale anului 2023 au permis ca rugina să evolueze tot sezonul de vegetație. Pagubele au fost foarte mari, deoarece rugina a ajuns la cariopse, care au rămas mici și șiștave.

Este interesant să ne confruntăm din nou cu rugina galbenă la un an de la epidemiile din anul 2023. Vom vedea dacă vremea umedă și răcoroasă va persista. Dacă temperaturile vor crește peste 200C, infecțiile vor fi stopate.

Pierderi importante apar atunci când infecțiile apar devreme, mai ales la soiurile sensibile. Când boala apare după înspicat, în funcție de condițiile climatice, pagubele pot fi mai mari sau mai mici. Patogenul afectează recoltele și cantitativ și calitativ. Pierderile oscilează între 10% - 70% și excepțional chiar 100% (mai ales la culturile de grâu ecologic și la soiurile sensibile) - Chen, 2005.

Pustule de Puccinia striiformis cu epiderma ruptă (29 aprilie 2024)

Pustule de Puccinia striiformis cu epiderma ruptăjpg

Recunoașterea simptomelor

În anii cu primăveri umede și răcoroase, plantele de grâu, dar și cele de orz, triticale, secară, pot fi infectate pe tot parcursul perioadei de vegetație.

Tabloul simptomatic al ruginii galbene este total diferit de cel al ruginii brune [Eugenia Eliade, 1985; Viorica Iacob et al., 1998; Popescu, 2005].

Puccinia striiformis atacă toate organele plantelor: tulpini, frunze, teci, spiculețe (peduncul, rahis), glume, cariopse, ariste.

Tabloul simptomatic al bolii:

  • Primele infecții apar în luna aprilie și se pot întinde până în luna iunie dacă vremea permite asta;

  • Inițial, pe frunzele infectate se observă semne de boală care constau în dungi clorotice, paralele. În aceste zone clorotice se vor forma pustule specifice de culoare galbenă - deschis și chiar portocalii uneori. Forma pustulelor este dreptunghiulară frecvent, însă se pot observa și pustule eliptice. Pe frunze, pustulele sunt dispuse sub formă de striuri sau dungi între nervuri, în șiruri paralele, cu o preferință pentru partea superioară. La atacuri masive, frunzele se usucă prematur;

  • În cazul atacului la spiculețe, cariopsele vor fi șiștave. După Alexandri et al. (1969), glumele sunt cel mai mult atacate, atât la exterior cât și la interior. De altfel, acestei rugini i se mai spune și „rugina glumelor”. Dispunerea pustulelor este la fel ca la frunze. La sfârșitul perioadei de vegetație se formează teleutopustulele de culoare neagră, de dimensiuni mici, acoperite de epidermă și cu aspect lucios;

  • La tinerele plăntuțe infectate, tabloul simptomatic este și el diferit. Pustulele formate nu sunt delimitate de nervurile frunzei și tind să iasă din această zonă, fiind localizate în toate direcțiile, acoperind uneori frunza în întregime [Chen et al., 2014];

  • La soiurile rezistente simptomele sunt diferite, comparativ cu soiurile sensibile. Uneori nici un simptom nu este vizibil, alteori apar mici pustule înconjurate de o cloroză și chiar necroză. În astfel de situații, producția de uredospori este foarte scăzută.

 

Condiții climatice favorabile infecțiilor

 

Rugina galbenă este o boală a climatului răcoros. Se poate spune că acest fung iese în evidență prin sensibilitatea la temperatură, lumină, umiditate și chiar la poluarea aerului. Intervalul termic preferat de ciupercă este cuprins între 2 - 150C [Zhang et al., 2008].

Uredosporii germinează cel mai bine la temperatura de 70C, considerată optimă. După Schroeder et Hassebrank (1964), uredosporii pot germina la o temperatură minimă de 00C, optimă cuprinsă între 7 - 120C și maximă de 20 - 260C. Din momentul realizării infecției și până la începutul sporulării, temperaturile preferate sunt cuprinse între 13 - 160C, mult mai scăzute comparativ cu alte rugini ale cerealelor. Temperaturile de peste 200C încetinesc dezvoltarea ruginii galbene, deși studiile efectuate în ultimii ani arată că există și tulpini care tolerează și temperaturi mai ridicate. Stubbs (1985) arată că, temperaturile din timpul nopții au un rol esențial în realizarea infecțiilor comparativ cu cele din timpul zilei. Autorul menționează că roua care se formează pe frunze și temperaturile mai scăzute favorizează apariția infecțiilor în timpul nopții. În general, apa liberă (roua și ploaia) și temperaturile scăzute favorizează infecțiile [Chen, 2005].

Umiditatea are un rol foarte important în patogenia acestei rugini, influențând aderarea sporilor la țesuturile plantei, germinarea, realizarea infecțiilor și supraviețuirea. Dacă în timpul dezvoltării fungului intervin temperaturi ridicate și perioade de uscăciune, germinarea uredosporilor este întreruptă [Vallavieille - Pope et al., 1995; Popescu, 2005].

Vântul are importanță deosebită în răspândirea uredosporilor la distanțe mari [Brown & Hovmøller, 2002; Popescu, 2005].

 

Ciclul de viață

 

Fungul supraviețuiește în timpul verii pe miriște, samulastra de grâu, alte poaceae spontane și din gazon. Samulastra de grâu este o punte de trecere a patogenului în noile culturi de grâu în timpul toamnei, mai ales dacă vremea este umedă și răcoroasă [Popescu, 2005]. În toamna 2023, pe tinerele plăntuțe de grâu s-au dezvoltat pustule de rugină galbenă. În timpul verii când temperaturile sunt mai ridicate, rugina galbenă nu este observată dar sursa de inocul există (uredospori). Uredosporii sunt spori care rezistă la secetă, la temperaturile ridicate dint timpul verii cât și la cele scăzute din anotimpul de iarnă [Murray et al., 2005; Popescu, 2005].

În condițiile climatice ale României, ciclul de viață al ruginii galbene este hemiform, adică se formează doar două stadii: uredosporii (de culoare galbenă) și teleutosporii (de culoare maro închis spre negru, bicelulari, considerați spori de supraviețuire peste anotimpul de iarnă). Uredosporii sunt cei care produc infecțiile la cereale în condiții de temperaturi scăzute și umiditate ridicată [Popescu, 2005]. După Chen et al. (2014), uredosporii sunt cei care produc infecții repetate în timpul sezonului de vegetație dacă condițiile climatice sunt favorabile. Când temperaturile cresc, infecțiile se opresc iar pe frunze se formează teleutopustulele cu aspect negricios dispuse în șiruri paralele. Viabilitatea teliosporilor este foarte scăzută (sub 1%) peste anotimpul de iarnă. De aceea în primăvară, infecțiile sunt produse de uredospori care rezistă mult mai bine în condiții de iarnă [Wang & Chen, 2015].

438100133 122155251842088675 2526296872526953673 n

 

Managementul integrat al ruginii galbene

 

Managementul ruginii galbene are ca scop protejarea frunzei stindard, precum și a celei de-a doua frunze. Cele două frunze trebuie să rămână libere de patogen deoarece producția finală depinde de acest lucru.

Măsuri profilactice

Deoarece patogenul este greu de combătut cu fungicide (fenomen de rezistență), măsurile profilactice sunt foarte importante în strategiile de management. Acestea constau în respectarea următoarelor măsuri:

  • Distrugerea samulastrei;

  • Folosirea soiurilor rezistente (mai ales în agricultura ecologică). Pierderile în producție pot fi mai reduse (de la 20% până la 90%). În cazul ruginii galbene, 20% pierdere în producție este totuși mult [Chen, 2014];

  • Sămânța să fie din sursă sigură și certificată;

  • Distrugerea poaceelor spontane;

  • Fertilizare cu azot echilibrată [Popescu, 2005].

Măsuri chimice

Tratamentele chimice sunt cele mai utilizate în combaterea ruginii galbene. Tratamentele trebuie efectuate ținându-se cont de următoarele recomandări:

  • Monitorizarea culturilor pentru a descoperi din timp primele infecții. Tratamentele trebuie efectuate în urma controalelor fitosanitare periodice chiar de la începutul perioadei de vegetație;

  • Aplicarea unui tratament se recomandă când PED - ul este de 25% intensitate de atac și înainte ca boala să devină severă [Popescu, 2005; Chen, 2014];

  • La semănat sămânța utilizată să fie tratată cu fungicide. Pentru tratarea semințelor este omologată substanța triticonazol.

Pentru combaterea ruginii galbene în perioada de vegetație sunt omologate următoarele substanțe: Tebuconazol; Azoxistrobin; Bixafen + spiroxamină + trifloxistrobin; Benzovindiflupir + protioconazol; Bezovindiflupir; Protioconazol; Difenoconazol; Fluxapyroxad; Metconazol; Protioconazol + spiroxamină + trifloxistrobin; Protioconazol + trifloxistrobin; Piraclostrobin; Mefentrifluconazol + piraclostrobin; Mefentrifluconazol; Fluxapyroxad + mefentrifluconazol; Proquinazid + protioconazol [Aplicația PESTICIDE 2.24.3.1, 2024].

Măsuri biologice

În prezent mulți agenți biologici sunt testați pentru combaterea biologică a ruginii galbene. Dintre agenții biologici testați, amintesc aici:

  • Biopreparate pe bază de Bacillus subtilis (tulpina QST 713) sunt testate pentru controlul ruginii galbene. În urma studiilor s-a constatat că, B. subtillis ține sub control patogenul doar la intensități mici de atac. Când severitatea infecției a fost ridicată și controlul biologic a fost mai scăzut, sub 30%. Tratamentele efectuate imediat după inocularea plantelor cu P. striiformis au dat cele mai bune rezultate. Concluzia studiului a fost că, tratamentele cu biopreparate sunt mai eficiente dacă sunt aplicate preventiv și nu curativ. Pentru obținerea unor rezultate bune în combatere, sunt necesare mai multe tratamente biologice, unul singur nefiind suficient [Reiss et Jørgensen, 2016];

  • Pseudomonas aurantiaca;

  • Brevibacillus spp.;

  • Acinetobacter spp.;

  • Chitosan [Feodorova - Fedotona et al., 2019].

Agenții biologici amintiți nu au dat rezultatele scontate în combatere. Feodorova - Fedotona et al. (2019) arată că, după doi ani de testări, rezultatele obținute nu au fost mulțumitoare.

 

Bibliografie

Alexandri A., M. Olangiu, M. Petrescu, I. Pop, E. Rădulescu, C. Rafailă, V. Severin, 1969. Tratat de fitopatologie agricolă, vol II, Editura Academiei Republicii Socialiste România, 578 p..
Brown, J. K. M., Hovmøller, M. S. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science (Washington, D.C.), 297: 537 – 541.
Chen X. M., 2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat, Canadian Journal of Plant Pathology, 27:3, 314 - 337.
Chen W., Weelings C., Chen X., Kang Z., Liu T., 2014. Wheat stripe (yelow) rust caused by Puccinia striiformis f. sp. tritici, Molecular Plant Pathology, 15 (5), 433 - 446.
Eliade Eugenia, 1985. Fitopatologie, Editat la Tipografia Universității din București, 277 p..
Feodorova - Fedotova L., Bankina B., Strazdina V., 2019. Possibilities for the biological control of yellow rust (Puccinia striiformis f. sp. tritici) in winter wheat in Latvia in 2017 – 2018, Agronomy Research 17(3), 716 – 724.
Iacob Viorica, Ulea E., Puiu I., 1998. Fitopatologie agricolă, Ed. Ion Ionescu de la Brad, Iaşi.
Martinez - Espinoza A., 2008. Disease Management in Wheat. 2008 - 2009 Wheat Production Guide.
Murray G., Wellings C., Simpfender S., Cole C., 2005. Stripe Rust: Understanding the disease in wheat, NSW Department of Primary Industries, 12 p.
Popescu Gheorghe, 2005. Tratat de patologia plantelor, vol. II, Editura Eurobit, Timișoara, 341 p.
Reiss A., Jorgensen L. N., 2016. Biological control of yellow rust of wheat (Puccinia striiformis) with Serenade®ASO (Bacillus subtillis strain QST 713), Crop Protection, vol. 93, 1 - 8.
Schröder J., Hassebrauk K., 1964. Undersuchungen uber die Keimung der Uredosporen des Gelbrostes (Puccinia striiformis West). Zentrab. Bakteriol. Parasitenk. Infektionskrank. Hyg. 118, 622 – 657.
Stubbs, R. W. 1985. Stripe rust. In Cereal rusts. Vol. II. Disease, distribution, epidemiology, and control. Edited by A.P. Roelfs and W. R. Bushnell. Academic Press, New York. pp. 61 – 101.
Vallavieille ‐ Pope C., Huber L., Leconte M., Goyeau H., 1995. Comparative effects of temperature and interrupted wet periods on germination, penetration, and infection of Puccinia recondita f. sp. tritici and P. striiformis on wheat seedling. Phytopathology, 85, 409 – 415.
Zhang Y. H., Qu Z. P., Zheng W. M., Liu B., Wang X. J., Xue X. D., Xu L. S., Huang L. L., Han Q. M., Zhao J., Kang Z. S., 2008. Stage ‐ specific gene expression during urediniospore germination in Puccinia striiformis f. sp. tritici. BMC Genomic.
Wang, M. N. and Chen, X. M. 2015. Barberry does not function as an alternate host for Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest due to teliospore degradation and barberry phenology. Plant Dis. 99:1500-150.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor
Miercuri, 27 Martie 2024 23:37

Făinarea cerealelor păioase

Blumeria graminis produce boala numită „făinare”. Acest fung este prezent în culturile de cereale an de an, cu frecvențe și intensități diferite de atac, în funcție de condițiile climatice. În toamnele și iernile blânde, în culturile de cereale păioase sunt observate simptomele tipice ale patogenului. În acest articol veți găsi informații utile despre biologia patogenului, simptomatologia, pagubele produse și strategia de combatere.

În culturile de grâu și orz din județul Timiș (cu siguranță și în alte zone din țară), fungul Blumeria graminis își face simțită prezența. Condițiile climatice înregistrate în luna martie 2024 (vreme răcoroasă și umedă) favorizează patogenia.

În culturile de grâu și orz verificate, am observat miceliile albe, bumbăcoase în zona bazei tulpinii, pe teaca frunzelor și pe frunzele bazale. Prin comparație cu grâul, la unele soiuri de orz simptomele pot fi observate pe frunzele noi.

Recomand verificarea culturilor și a prognozei climatice.

Făinare alături de pătare reticulară

Făinare alături de pătare reticulară

În cazul în care vremea răcoroasă și umedă se menține patogenul va urca în etajele superioare ale plantelor, pe măsură ce acestea se dezvoltă. Temperaturile ridicate și lipsa precipitațiilor opresc evoluția făinării cerealelor păioase.

La apariția epidemiilor și chiar a pandemiilor de făinare concură factorii tehnologici (monocultura sau absenţa rotaţiei, densitatea mare a plantelor, irigarea, excesul sau carenţa elementelor nutritive, întârzierea semănatului), precum și vremea răcoroasă și umedă.

 

Importanța economică a bolii

 

Făinarea cerealelor păioase face parte dintre principalii patogeni prezenți an de an în țara noastră. La nivel mondial, boala este larg răspândită pe toate continentele, dar mai ales în zonele umede. Pierderile de producție sunt în strânsă corelație cu condițiile climatice, putând ajunge chiar la 45%. Pe lângă pierderile cantitative, fungul poate afecta și calitatea recoltei (însușirile de panificație) - [Zeller et al., 2002]. În condiții de infecții severe la spic, Blumeria graminis poate afecta coacerea grâului și calitatea morăritului [Everts et al., 2001].

Este important ca frunza stindard să fie liberă de patogen, mai ales la soiurile sensibile. Dacă patogenul cuprinde această frunză (esențială pentru producția finală), pagubele în producție pot ajunge la 25%. La soiurile rezistente pierderile înregistrate pot fi cuprinse între 5 - 8%, atunci când făinarea ajunge la frunza stindard (steag).

 

Recunoașterea simptomelor

 

Simptomele produse de Blumeria graminis la orz și grâu sunt foarte ușor de recunoscut, neputând fi confundate cu simptomele produse de alți patogeni foliari. Atacă toate organele aeriene ale plantelor (frunze, teci, tulpini, spice, ariste).

Tabloul simptomatic al bolii:

  • După realizarea infecției, pe frunzele bazale apar pete clorotice sau galbene;

  • La suprafața petelor de pe frunze, pe măsură ce patogenul evoluează, se formează aglomerări de micelii mici, albe și cu aspect pâslos. Miceliile albe pot fi izolate sau se pot uni;

  • În condiții favorabile, pete acoperite de micelii vor apărea și pe frunzele din etajele superioare, pe tecile frunzelor, pe tulpini (miceliile le cuprind de jur împrejur ca un manșon) și în final pe spice;

  • Miceliile albe de pe organele atacate își vor schimba culoarea (de la alb la gălbui) pe măsură ce boala evoluează, căpătând aspect prăfos, făinos. Este semn că ciuperca sporulează (se formează lanțurile de conidii sau oidii). Datorită aspectului făinos, boala a primit numele popular de „făinare”;

  • Pe măsură ce plantele devin mature, aglomerările de hife miceliene devin gri şi apoi uşor brune la culoare. În această etapă pot fi observate în micelii corpușoare mici, negre, asemănătoare cu boabele de piper (peritecii sau cleistotecii cu asce şi ascospori). Formarea cleistoteciilor reprezintă sporogeneza telomorfă sau sexuată a ciupercii sau „faza galben - roşcată”;

  • Sub pâsla miceliană, uşor desprinsă cu degetele mâinilor, ţesuturile plantelor sunt brune, necrotice sau moarte [Hatman et al., 1989; Eliade, 1990; Lipps, 1996; Baicu et Seşan, 1996; Popescu, 1998, 2005].

Micelii albe pe teaca frunzei

Micelii albe pe teaca frunzei

În condiții favorabile, la soiurile sensibile și în zonele unde sunt prezente patotipuri cu virulență ridicată, manifestarea la exteriorul plantelor, specifică ciupercii Blumeria graminis, devine severă, amplă, adică ia caracter de masă sau de epidemie şi chiar de pandemie [Prescott et al., 1986; Popescu, 1998; Bissonette, 2002].

 

Supraviețuirea patogenului peste iarnă

 

Fungul iernează în anotimpul rece sub formă de cleistotecii pe samulastra de grâu și orz infectat. Pe lângă cleistotecii, patogenul poate ierna și sub formă de micelii pe plantele de grâu şi orz, putând produce conidii ce pot fi responsabile de infecțiile inițiale. Iernarea şi perpetuarea de la un an la altul a fost şi este studiată de diferiţi cercetători, dar ca şi alte probleme şi în aceasta sunt multe lucruri neelucidate sau controversate.

 

Realizarea infecțiilor

 

Infecțiile cu Blumeria graminis pot apărea încă din toamnă dacă vremea permite. Uneori, în iernile blânde se pot observa micelii albe pe frunzele tinerelor plăntuțe. În toamna 2023 și iarna 2024, în zona de vest a țării au fost observate infecții la grâu și orz.

Infecţiile de toamnă constituie sursa principală de răspândire a bolii, miceliul rezistând peste iarnă [Hulea et al., 1975; Hatman et al., 1989; Popescu, 1998; Bissonnette, 2002].

Primăvara, primele infecții sunt produse de ascosporii eliberați din ascele aflate în cleistotecii, cât și de conidiile produse de miceliile care iernează. Cleistoteciile se formează pe frunze, pe tulpini şi teci (iernează pe acestea), iar în primăvara următoare ascosporii eliberați produc infecţiile primare [Sandu-Ville, 1967; Eliade, 1990; Davis et al., 2002]. După Eliade (1990), la Blumeria graminis pe Triticum vulgare, cleistoteciile se formează din abundenţă şi de obicei în fiecare an, în condiţiile din ţara noastră.

Infecțiile secundare în sezonul de vegetație sunt produse în mod repetat de conidiile care se formează la suprafața miceliilor când ciuperca sporulează (sporulare asexuată). Conidiile sunt purtate de vânt pentru ciclul secundar al bolii la intervale de zece zile.

 

Condiții climatice favorabile infecțiilor

 

Factorii de mediu contează cel mai mult în realizarea infecțiilor, care este în strânsă corelație cu următorii parametri climatici:

  • Temperatura. Fungul Blumeria graminis, realizează infecţia cerealelor şi își manifestă patogenitatea în limite largi de temperatură. Cu toate acestea, ciuperca este virulentă în condiții de răcoare. Asta înseamnă că preferă temperaturile cuprinse între 17 - 220C [Prescott et al., 1986; Williams et Littlefield, 1995] sau 15 - 250C [Kochourek et Vechet, 1984; Bailey et al., 1995; Lipps, 1996]. Pe măsură ce temperaturile trec de 250C, patogenul nu mai infectează;

  • Umiditatea (roua, precipitațiile, umiditatea relativă a aerului). Umiditatea relativă a aerului şi precipitaţiile interferează pozitiv cu gradul de atac al ciupercii, dar cu o intensitate redusă la jumătate faţă de rouă. S-a constatat că ciuperca poate fi mai agresivă la valori mai scăzute ale umidității (37 - 56%) decât la o atmosferă cu hidroscopicitate de 79 - 97% (Sandu-Ville, 1967; Kocourek et Vechet, 1984; Eliade, 1990; Yang et al., 1992; Friedrich, 1995 a şi b; Deacon, 1997, 2006; Chet, 2003; Cotuna et Popescu, 2005b). Alți autori arată că făinarea poate fi puternic extensivă atunci când umiditatea relativă este cuprinsă între 85% și 100% (în prezența sau lipsa ploilor) - [Kochourek et Vechet, 1984; Prescott et al., 1986; Bailey et al., 1995; Williams et Littlefield, 1995; Lipps, 1996]. Ploile puternice nu sunt favorabile producerii de spori sau creşterii miceliului pe suprafaţa frunzelor [Evans, 1997; Chet, 2003];

  • Lumina. Însuşirile de patogenitate ale ciupercii sunt influenţate şi de lumină şi de întuneric. La întuneric lanţurile de oidii sunt mai lungi, au vitalitate scăzută şi o slabă putere de infecţiozitate datorită conţinutului scăzut de carbohidraţi [Sandu-Ville, 1967; Kocourek et Vechet, 1984; Eliade, 1990];

  • Nebulozitatea de 3 - 6 este la limita semnificaţiei [Deacon, 1997, 2006; Chet, 2003; Cotuna et Popescu, 2005b];

  • Viteza vântului este importantă în diseminarea patogenului în interiorul plantelor și la distanțe mai mari [Eliade, 1990; Cotuna et Popescu, 2005b].

 

Managementul integrat al făinării cerealelor

 

Făinarea cerealelor păioase poate fi combătută prin utilizarea echilibrată a măsurilor profilactice, chimice și biologice. În România, de regulă patogenul nu pune probleme decât în anii extrem de favorabili infecțiilor și doar atunci când infecția ajunge la spic putem discuta de daune.

Miceliu de culoare cenușie (mai vechi) alături de rugina (Puccinia hordei)

Miceliu de culoare cenușie mai vechi alături de rugina Puccinia hordei

Măsuri profilactice

Aceste măsuri au rol important în prevenirea făinării la grâu, dar și la alte cereale și constau în: respectarea rotaţiei culturilor; executarea corectă a lucrărilor solului; semănatul la date şi densităţi optime; folosirea soiurilor rezistente cu productivitate ridicată; utilizarea raţională a fertilizării; distrugerea samulastrei; irigarea judicioasă acolo unde este cazul [Hatman et al., 1986; Iacob, 2003].

Măsurile de prevenție enumerate pot ține departe boala. Pe de altă parte, sunt cele mai ieftine.

Măsuri chimice

Combaterea chimică trebuie să se facă la avertizare, după cum urmează:

  • După înfrățit când pe ultimele trei frunze sunt peste 25 pete pâsloase;

  • Înainte de înflorit când pe frunza stindard sunt peste 25 pete pâsloase (PED-ul sau pragul economic de dăunare) și factorii climatici (temperatură, umiditate, ploaie, ceaţă, rouă) continuă să se întrunească în limite optime pentru dezvoltarea bolii [Popescu, 1998].

De reținut! Stropirile aplicate la faza de un nod (stadiu de creştere GS 31) au controlat de timpuriu făinarea. Cel mai bun control a fost asociat cu stropirile aplicate la emergerea frunzei stindard (GS 39 – 43) sau apariţia spicului (GS 59), stadii dezvoltate înainte de creşterea atacului. Stropirile aplicate în fenofazele amintite au determinat o bună protecţie a spicului [Harwick et al., 1994].

420178045 122148346472088675 148099096256288244 n

Fungicidele omologate în România pentru combaterea făinării cerealelor (dar și pentru alte boli ale cerealelor) sunt: azoxistrobin; azoxistrobin + protioconazol; azoxistrobin + difenoconazol + tebuconazol; protioconazol + tebuconazol; protioconazol + spiroxamină + trifloxistrobin; protioconazol + spiroxamină + tebuconazol; bixafen + tebuconazol; difenoconazol; metrafenonă; ciprodinil; piriofenonă; fluxapyroxad; fenpropidin; fluxapyroxad + mefentrifluconazol; mefentrifluconazol + piraclostrobin; mefentrifluconazol; metconazol; protioconazol; tebuconazol; boscalid + kresoxim metil; difenoconazol + fluxapiroxad; proquinazid; proquinazid + protioconazol; kresoxim - metil + mefentrifluconazol [după aplicația PESTICIDE 2.24.3.1, 2024].

Măsuri biologice

În culturile de cereale, măsurile biologice aproape că nu există. Având în vedere contextul actual (multe pesticide sunt retrase) există interes la nivel mondial pentru mai mulți agenți biologici care ar putea fi utilizați în combaterea făinării cerealelor. Aceștia sunt: Bacillus subtilis, B. chitinospora, B. pumilus, Pseudomonas fluorescens, Rhodotaula sp. (Xiaoxi & Wenhong, 2011; Shahin et al., 2019).

Lanț de conidii de Blumeria graminis la microscop

Lanț de conidii de Blumeria graminis la microscop

 

Bibliografie

Baicu T., Seşan Tatiana Eugenia, 1996 – Fitopatologie agricolă, Ed. Ceres Bucureşti, 315, p. 137 – 139;
Bailey J. E., Jarrett R., Leath S., 1995 – Disease Identification North Carolina Cooperative Extension, Small Grain Production Guide 7, 1995.
Bissonnette Suzanne, 2002 – Powdery mildew of wheat. The Pest Management and Crop Development Bulletin.
Chen - Xiaoxi, Liu Wenhong, 2011 - Potent antagonistic activity of newly isolated biological control Bacillus subtilis and novel antibiotic against Erysiphe graminis f. sp. tritici, Journal of Medicinal Plants Research, Vol. 5(10), pp. 2011 - 2014, Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals, accesat la data 18.04.2022.
Chet L., 2003 – Development of powdery mildew and leaf rust epidemics in winter wheat cultivars: Plant soil Environ, 49 (10): 439 – 442.
Cotuna Otilia, Popescu G., 2005b - Researches concerning the sexual incidence of Blumeria graminis (DC) Speer in different biotrophic related with the climatic factors. 5th Intern. Conference, Univ.of Miskolc, Hungary, 14 - 20 aug. 2005 (Agriculture), 43 - 48.
Davis R. M., Davis U. C., Jackson L. F., 2002 – Small grains powdery mildew, UCIPM Pest Management Guidelines: Small Graines Disease UC ANR Publication 3466.
Deacon J. W., 2006 – Fungal biology, Blackwell Publishing Ltd, 280 - 307.
Eliade Eugeania, 1990 – Monografia erysiphaceelor din România, Bucureşti, 573, p. 166 – 179.
Everts K. L., Leath S., Finney P. L., 2001 - Impact of powdery mildew and leaf rust on milling and baking quality of soft red winter wheat. Plant Dis.,85: 423 – 429.
Friedrich S., 1995 – Calculation of conidial dispersal of Erysiphe graminis whithin naturally infected plant canopies using hourly meteorological input parameters. Zeitschrift für Pflanzen krankheiten und Pflanzenschutz, 1995, 102: 4, p. 337 - 347.
Friedrich S., 1995 – Modelling infection probability of powdery mildew in winter wheat by meteorological input variables. Zeitschrift für Pflanzenkranken heiten und Pflanzenschutz, 1995, 102: 4, 354 - 365.
Harwick N. V., Jenkins J. E. E., Collins B., Groves S. J., 1994 – Powdery mildew (Erysiphe graminis) on winter wheat: control whit fungicides and the effects on the yield, Crop Protection 1994, 13: 2, p. 93 - 98.
Hatman M., Bobeş I., Lazăr Al., Gheorghieş C., Glodeanu C., Severin V., Tuşa Corina, Popescu I., Vonica I., 1989 – Fitopatologie, Edit. Did. şi Ped. Bucureşti, p. 185 - 188.
Hulea Ana, Paulian F., Comeş I., Hatman M., Peiu M., Popov C., 1975 – Bolile şi dăunătorii cerealelor. Edit. Ceres, Bucureşti, p. 27 – 30.
Iacob Viorica, 2003 – Fitopatologie, Ed. Ion Ionescu de la Brad, Iaşi, p. 170.
Kocourek F., Vechet L., 1984 - Uber ein temperaturbhangiges Modell zur Vorhersage der Entwicklungsgeschwindikeit bei Erysiphe graminis f. sp. tritici. Anz. Schadlinskd. Pfl. Um.,57:15 - 18.
Lipps Patrick E., 1996 – Powdery mildew of wheat. The Ohio State University Extension. Plant Pathology.
Prescott J. M., Burnett P. A., Saari E. E., 1986 – Wheat Diseases and Pests, A Guide for Field identification, CMMYT. Mexico.
Popescu G., 1998 – Fitopatologie, Edit. Mirton Timişoara, 1998, 190, p. 3 – 4.
Popescu G., 2005 – Tratat de Patologia plantelor, vol. II, agricultură, Editura Eurobit, 350 p..
Shahin A. A., Ashmavy M. A., Esmail M. S., El - Moghazy, 2019 - Biocontrol of wheat powdery mildew disease under field conditions in Egypt, Plant Protection and Pathology Research, Zagazig J. Agric. Res., vol. 46, No (6B), 2255 - 2270.
Sandu Ville C., 1967 – Ciupercile Erysiphaceae din România. Ed. Acad. RSR, Bucureşti, 358 p.
Trevathan L. E., 2001 – Diseases of Crops, Departament of Entomology and Plant Pathology, Missisipii State University. EPP, 4214 – 6214.
Wiliams E., Littlefield L. J., 1995 – Major Foliar Fungal Diseases of Wheat in Oklahoma. Oklahoma Cooperative Extension Service. OSU Extension Facts, F - 7661.
Yang J. S., Ge Q. L., Wu W., Wu Y. S., 1992 – On the infection cycle of Blumeria graminis D.C. Speer in Northeastern China. Acta Phytopatologica Sinica, 1992, 22: 1. P. 35 - 40.
Zeller F. J., Petrova Nedialka, Spetsov Penko, Hsam S. L. K., 2002 - Identification of powdery mildew and leaf rust resistance genes, in common wheat (Triticum aestivum L. em. Thell.) cultivars grown in Bulgaria and Russia. Published in Issue, nr. 122, 32 - 35.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor

Readuc în atenția pomicultorilor fungul Schizophyllum commune (patogen/saprofit) care este tot mai prezent în livezile de pomi fructiferi, în cele de nuc și chiar în plantațiile de paulownia. În articolul de față găsiți informații valoroase despre patografia, biologia, epidemiologia și combaterea acestui fung.

Fungul S. commune a fost raportat ca fiind prezent în lemnul mort la aproximativ 150 de genuri de plante. Ocazional a fost raportat și ca patogen la speciile lemnoase, dar și la oameni [Schmidt et Liese, 1980].

Takemoto et al. (2010) arată că fungul este recunoscut ca agent patogen ce produce putrezirea lemnului la pomii vii. În cartea sa despre bolile pomilor fructiferi, Togashi (1950), a descris S. commune ca fiind un agent patogen care pătrunde prin răni și duce la putrezirea lemnului la multe specii pomicole (semințoase, sâmburoase), putând produce pagube considerabile. Autorul arată că fungul este adesea semnalat la măr, piersic, cireș, cais.

419329396 122145555842088675 2984738256194862340 n

Despre acest fung am mai scris în trecut. Acum îl readuc în atenția dumneavoastră deoarece constat că el se extinde tot mai mult în livezile din România, fiind prezent mai mult la pomii tineri decât la cei bătrâni, aflați în declin (cum ar fi normal să fie). Bineînțeles că, prezența acestui fung la pomii tineri ar trebui să ne îngrijoreze deoarece aceștia vor intra în declin.

În luna februarie 2024 am efectuat controale fitosanitare în livezi tinere de nuc (5 ani și 11 ani) din Sibiu. Am constatat că nucii erau infectați cu fungi care produc cancere (acum lucrez la diagnostic). Pe zonele lezate, în crăpăturile scoarței de pe tulpini și ramuri erau prezenți carpoforii fungului Schizophyllum commune. În consecință, starea de sănătate a nucilor este grav afectată, la fel și vigoarea.

Carpofori de Schizophyllum commune pe trunchi de nuc

Carpofori de Schizophyllum commune pe trunchi de nuc

După nuc, la începutul lunii martie 2024 am verificat o plantație de paulownia în vârstă de 6 - 7 ani din vestul României. Arborii erau și ei infectați cu un patogen care produce cancer (în analiză pentru stabilire diagnostic). Atașat, pe zonele bolnave era fungul Schizophyllum commune, care va întregi procesul de putrezire al lemnului. Având în vedere că lemnul de paulownia este cultivat pentru cherestea, patogenii instalați vor deprecia calitatea lemnului.

Carpofori de Schizophyllum commune pe trunchi de paulownia

Carpofori de Schizophyllum commune pe trunchi de paulownia

Boala produsă de Schizophyllum commune poartă numele de „putregaiul alb” sau „putrezirea Schizophyllum” (în engleză „Schizophyllum rot”). Există autori care au numit boala „cancerul și declinul pomilor”, deoarece fungul are capacitatea de a putrezi lemnul. Din momentul în care pătrunde în tulpină, ciuperca nu mai poate fi controlată. Cu cât diametrul tulpinii este mai mic, pomii sau arborii infectați sunt sortiți pieirii, mai devreme sau mai tarziu.

Schizophyllum commune este considerat un fung saprofit ce are capacitatea de a descompune lemnul mort, dar poate provoca daune și copacilor slăbiți, la fel ca o ciupercă patogenă cu virulență slabă. Prin urmare, este considerat un parazit de rană sau de plagă care poate degrada lemnul pomilor (cambium/alburn rănit dar și duramenul expus). În general, ciuperca colonizează pomii stresați de căldură, arsuri solare, secetă, insecte sau răni majore, lemnul tăiat și căzut și părțile moarte ale copacilor vii. Putrezirea lemnului este de obicei o boală a copacilor bătrâni. În cazuri speciale, ciuperca poate infecta și pomii tineri. Când Schizophyllum commune infectează pomii tineri și foarte tineri, este semn că aceștia sunt debilitați din alte cauze. Patogenul este dificil de gestionat în livezile infectate.

420179441 122145555248088675 6165235263288786023 n

Atenție, Schyzophyllum commune produce boli la oameni.

S. commune este cel mai cunoscut agent de infecție umană dintre Basidiomycotine. Pe lângă faptul că este considerat un agent patogen al plantelor din ce în ce mai agresiv care provoacă putregaiul alb, s-a raportat recent că această ciupercă poate provoca boli grave: micoza bronhopulmonară alergică [Kamei et al., 1994], boală pulmonară cronică [Ciferri et al., 1956], meningită [Chavez – Batista et al., 1955], sinuzită [Kern et Uecker, 1986; Catalano et al., 1990; Rosenthal, 1992], alergii etc. Datorită adaptării extraordinare la climatul arid și rezistența la poluare, Schizophyllum commune s-a dovedit a fi cel mai agresiv și de succes invadator fungic universal al speciilor lemnoase, amenințând oamenii imunodeprimați și chiar pe cei sănătoși [Matavulj et al., 2013].

 

Recunoașterea simptomelor

 

Fungul se recunoaște foarte ușor datorită corpurilor fructifere (în formă de evantai și culoare albă, cenușie) prezente pe trunchiul și ramurile pomilor și/sau arborilor. Prezența carpoforilor indică faptul că scoarța și cambiul sunt moarte, iar ramurile sau tulpina sunt cel puțin parțial putrede. Deoarece degradarea cauzată de acest fung poate progresa rapid în tulpină, se presupune că, atunci când carpoforii sunt vizibili, o parte considerabilă a tulpinii ar putea fi putrezită. Prin urmare, tulpinile sau ramurile care prezintă fructificații ar trebui considerate cu un risc crescut de mortalitate [Luley et Kane, 2009].

418170749 122145555194088675 3274836943722886379 n

Pomii infectați au vigoarea scăzută, prezintă gome în țesuturile lemnoase, frunze mici, putând apărea chiar fenomene de defoliere prematură [Puterill, 1922]. Majoritatea pomilor infectați sunt de obicei deja slăbiți și prezintă simptome nespecifice de anomalie a coroanei, cum ar fi defolierea, regresia, producții mici.

Corpurile fructifere (carpoforii sau bazidiocarpii) au dimensiuni cuprinse între 1 - 6 cm lățime, formă de evantai când se formează pe părțile laterale ale pomului, neregulată uneori funcție de locul unde se formează. Carpoforii sunt acoperiți cu perișori și pot avea culoare albă, cenușie și chiar cafenie când îmbătrânesc, nu au tulpină, au consistență tare, pieloasă. Lamelele de pe suprafața inferioară (asemănătoare unor branhii) produc bazidiospori. Sporii au dimensiuni cuprinse între 3-4 x 1-1,5 μm, sunt cilindrici până la eliptici, netezi. Corpurile fructifere sunt necomestibile datorită dimensiunilor mici și consistenței pieloase, dură. Basidiosporii sunt dispersați abundent în aer și joacă un rol important în realizarea infecțiilor [James et Vilgalys, 2001].

417570022 122145555428088675 5065503735511788794 n

Pe timp de secetă, corpurile fructifere se usucă, dar au capacitatea de a se rehidrata în condiții de umiditate. Astfel, de deschid și se închid de mai multe ori pe parcursul unui sezon de creștere. Aceasta este o adaptare excelentă pentru un climat arid, cu ploi sporadice. Spre deosebire de alte ciuperci, miceliul trebuie să producă doar un set de corpi fructiferi pe an. Este o strategie excelentă pentru reproducerea fungică. Chiar și în timpul iernii putem găsi corpuri fructifere sporulante ale acestei ciuperci.

După Hemmi (1942), S. commune are capacitatea de a invada țesuturile vii ale plantelor lemnoase și de a le omorî treptat [Hemmi, 1942]. Încă din 1922, Putterill a realizat experimente de inoculare la migdal, cais și piersic și a raportat că fungul a manifestat patogenitate la cais și piersic. Tot el a raportat și prezența gomelor, cleiurilor în vasele și celulele lemnului bolnav. Partea putredă a lemnului se distinge clar de cea sănătoasă printr-o linie distinctă. Uneori, ciuperca poate popula țesuturile vii ale pomilor fără simptome vizibile [Nakazawa et Harada, 2002]. După Poole (1929), patogenul poate pătrunde ușor la merii infectați de bacteria Erwinia amylovora. De asemenea, poate însoți cancerele produse de Nectria sp., Botryosphaeria sp., Phomopsis sp., Valsa sp. etc.

 

Realizarea infecțiilor

 

Unii cercetători consideră S. commune parazit de plagă sau chiar saprofit, alții arată că fungul este de fapt un agent patogen al plantelor producând boala „putrezirea Schizophyllum” sau „Schizophyllum rot” (în engleză), la pomii vii. La sâmburoase poate produce pagube considerabile mai ales la pomii debili sau neîngrijiți [Togashi, 1950; Kishi, 1998].

De-a lungul timpului, ciuperca a fost recunoscută de către mulți cercetători ca fiind agent patogen de putrezire al pomilor fructiferi [Putterill, 1922; Bergdahl et French, 1985; Lacok, 1986; Oprea et al., 1994; Snieskiene et Juronis, 2001; Shimizu et al., 2008; Lahbib et al., 2016].

De obicei, Schizophyllum commune nu poate pătrunde într-o plantă sănătoasă. Un pom viu poate fi infectat doar dacă prezintă leziuni prin care ciuperca poate pătrunde. Cazuri excepționale au fost raportate la măr, unde ciuperca a pătruns totuși prin țesuturile tinere de la vârful tulpinii. De regulă, fungul pătrunde prin răni care lasă la vedere alburnul, cum ar fi: leziuni ce rămân în urma tăierilor, înghețurilor, arsurilor solare, grindinei, atacului agenților fitopatogeni și al dăunătorilor etc [Putterill, 1922; Snieškienė et Juronis, 2001; Ito, 1955; Nakazawa, N. & Harada, 2002].

Odată infecția realizată, fungul Schizophyllum commune descompune scoarța și cambiul copacilor după care trece în alburn, iar moartea pomilor este iminentă în astfel de situații. De cele mai multe ori se stabilește ușor pe scoarța și cambiul care sunt deja putrede din alte cauze. Din țesuturile moarte, cu ușurință va trece în scoarța sănătoasă și cambiul adiacent. Boala mai poartă numele de „putrezirea sevei” deoarece descompunerea are loc în alburn după care progresează spre centrul tulpinii. Totuși, această denumire este oarecum greșită, deoarece marea majoritatea ciupercilor de putrezire a sevei sunt capabile sau au capacitatea de a descompune și duramenul unui pom, odată ce alburnul a putrezit [Luley et Kane, 2009]. Se poate spune că, fungul acționează ca un organism care produce „cancer”, fiind capabil să descompună rapid lemnul. Sănătatea pomului pare a fi un factor important în limitarea răspândirii putregaiului sevei la țesuturile adiacente.

418990512 122145555788088675 4022987151810068069 n

 

Condiții necesare dezvoltării fungului

 

În zonele cu climat temperat, fungul are condiții foarte bune de dezvoltare [Vulinovic et al., 2018]. Numeroase studii arată că, factorii climatici au un rol important în creșterea incidenței atacului acestui fung. Astfel, temperaturile scăzute din timpul iernii, seceta din vară și umiditatea foarte ridicată susțin patogenia [Sinclair et al., 1987; Oprea et al., 1994; Snieškienė et Juronis, 2001]. Pe lângă acești factori, vigoarea scăzută a pomilor facilitează infectarea [Essig, 1922].

Plantație de paulownia

Plantație de paulownia

Deoarece este adaptat la condițiile aride și este rezistent la poluare, fungul S. commune s-a dovedit a fi cel mai agresiv invadator al speciilor lemnoase forestiere, pomicole, ornamentale etc. Pe lângă asta amenință persoanele imunocompromise, producând alergii, sinuzite, boli de plămâni [Vulinovic et al. 2018].

 

Managementul integrat al fungului

 

Fungul este încadrat în categoria de risc scăzut (zona galbenă) [31; 32]. Cu toate acestea, ciuperca poate afecta sănătatea și stabilitatea structurală a pomilor. Pomii infectați trebuie supuși monitorizării numai dacă ciuperca este asociată cu trunchiul principal sau cu ramurile de schelet ale copacilor.

Metode profilactice

Cel mai bun mod de a preveni „putrezirea Schizophyllum” este să menținem starea de sănătate a pomilor.

În acest sens trebuie respectate câteva reguli:

  • Minimizarea rănilor care rămân în urma tăierilor deoarece patogenul pătrunde prin răni. Rănile cauzate de tăieri, precum și cele cauzate de temperaturile scăzute, dar și arsurile solare ar putea servi cu ușurință drept porți de intrare pentru Schyzophylum commune. Se cunoaște că, fungul se atașează de scoarțe rănite, cancere de pe ramuri și tulpini. Odată stabilit pe copacii infectați, putrezirea localizată poate continua și deschide calea pentru infecții suplimentare cu alte ciuperci oportuniste de dezintegrare a lemnului;

  • Efectuarea tăierilor în perioada de repaus vegetativ și pe vreme uscată;

  • Identificarea pomilor infectați cu Schyzophillum commune și verificarea stării lemnului (dacă mai este lemn sănătos sau nu);

  • Păstrați vigoarea pomilor printr-o fertilizare adecvată și echilibrată. Aplicați îngrășăminte la mijlocul toamnei sau primăvara devreme;

  • Irigarea echilibrată, mai ales în timpul perioadelor secetoase, la fiecare 10 - 14 zile (dacă este vreme uscată și caldă pe o perioadă prelungită);

  • Pomii proaspăt plantați ar trebui protejați la intrarea în iarnă prin înfășurarea trunchiurilor cu hârtie Sisalkraft (specială pentru împachetarea pomilor înainte de iernat);

  • Evitarea rănirii inutile a scoarței în timpul lucrărilor din livadă. Rănile apărute trebuie tratate, badijonate cu substanțe ce conțin substanțe fungicide, deși de multe ori nu au nici un efect și sunt doar cosmetice. Mai indicată este netezirea și dezinfectarea rănilor cu alcool 70%;

  • Îndepărtarea ramurile și a pomilor grav deteriorați din livadă [Jha, 2020]. Alternativ, îndepărtarea părților infectate ar putea fi luată în considerare dacă ciuperca este observată pe ramuri de dimensiuni mici.

Se recomandă îngrijirea cu atenție a pomilor care suferă daune climatice pentru a preveni instalarea acestui fung, dar și a altor basidiomicotine de putrezire a lemului [Takemoto et al., 2010].

420223490 122145555734088675 7377608168927359737 n

Măsuri chimice

Fungicidele pot fi aplicate copacilor infectați cu această ciupercă ca măsură provizorie pentru a întârzia creșterea fungică. În realitate, deoarece ciuperca este în interiorul lemnului, nu există tratamente fungicide eficiente.

 

Bibliografie

[1] Barnard E. L., Smith J., Understanding Decay in Florida Trees - An expplanation and pictorial guide to some of the more common decay fungi observed on Florida Trees, 8 p., https://www.floridaisa.org/.../understandingDecay...
[2] Bergdahl, D. R. & French, D. W. (1985) Association of wood decay fungi with decline and mortality of apple trees in Minnesota. Plant Dis., 69, 887–890
[3] Castillo, G. & Demoulin, V. (1997) NaCl salinity and temperature effects on growth of three wood-rotting basidiomycetes from a Papua New Guinea coastal forest. Mycol. Res., 101, 341–344
[4] Ciferri, R., Chavez Batista, A., Campos, S. (1956): Isolation of Schizophyllum commune from sputum. Atti Inst. Bot. Lab. Crittogam. Univ. Pavia 14:118 – 120.
[5] Chavez - Batista, A., Maia, J.A., Singer, R. (1955): Basidioneuromycosis on man. Anais Soc Biol Pernambuco 13:52 – 60.
[6] Catalano, P., Lawson, W., Bottone, E., Lebenger, J. (1990): Basidiomycetous (mushroom) infection of the maxillary sinus. Otolaryngol. Head Neck Surg. 102: 183– 185.
[7] Essig, F. M. (1922) The morphology, development, and economic aspects of Schizophyllum commune Fries. University of California Publications in Botany, 7, 447–498, plates 51–61.
[8] Hemmi, T. (1942) On some diseases of fruit trees in Manju region and North China (II). J. Plant Prot., 29, 66–71, plates 1–7 [In Japanese].
[9] Ito, K. (1955) Diseases of chestnut and their characteristics. In Chestnut in Japan, eds. Kajiura, M. & Ono, Y., Japanese Chestnut Council, Tokyo, Japan, 45–58 [In Japanese].
[10] James, T. Y. & Vilgalys, R. (2001) Abundance and diversity of Schizophyllum commune spore clouds in the Caribbean detected by selective sampling. Mol. Ecol., 10, 471–479.
[11] Jha S. K., 2020, Identification and management of heart-rot fungi,” Banko Janakari, vol. 30, no. 2, pp. 71–77, 2020.
[12] Kern, M. E. and Uecker, F. A. (1986): Maxillary sinus infection caused by the homoba-sidiomycetous fungus Schizophyllum commune. J Clin Microbiol, 23: 1001–1005.
[13] Kishi, K. (1998) Plant diseases in Japan. Zenkoku-NosonKyoiku Kyokai Publishing Co. Ltd., Tokyo, Japan [In Japanese].
[14] Lahbib A, Chattaoui M, Aydi N, Zaghouani H, Beldi O, Daami-Remadi M, Nasraoui B, 2016. First report of Schizophyllum commune associated with apple wood rot in Tunisia. New Disease Reports 34, 26. http://dx.doi.org/10.5197/j.2044-0588.2016.034.026.
[15] Lačok, P. (1986) Fungi and apricot cultures in Slovakia (Czechoslovakia) at present. Acta Horticulturae, 192, 205 – 212.
[16] Latham, A. J. (1970) Development of apple fruit rot and basidiocarp formation by Schizophyllum commune. Phytopathology, 60, 596–598.
[17] Matavulj Milan N., Svjetlana B. Lolić , Slobodanka B. Vujčić, Snežan a Milovac, Milana S. Novaković, Maja A. Karaman, 2013 - Schizophyllum commune: The main cause of dying trees of the Banja Luka arbored walks and parks, Jour. Nat. Sci., Matica Srpska Novi Sad, № 124, 367—377, 2013, DOI: 10.2298/ZMSPN1324367M.
[18] Milovac S., Škrbić B., Lolić S., Karaman M., Matavulj M., 2017, Distribucija teških metala u biotskom i abiotskom matriksu pored visokofrekventne saobraćajnice u Banjoj Luci. (Distribution of heavy metals in biotic and abiotic matrix along high-frequency road in the Banja Luka city. Proceedings of the Conference on 20 Anyversary of the Faculty of Sciences of the Banja Luka University (Republic of Srpska, Bosnia). 1: 29 – 40.
[19] Nakazawa, N. & Harada, Y. (2002) Growth inhibition of Valsa ceratosperma by fungal isolates from apple trees. Ann. Rept. Plant Prot. North Japan, 53, 109 – 111 [In Japanese].
[20] Oprea, M., Şesan, T. & Bălan, V. (1994) Schizophyllum commune – canker and dieback disease of apricot trees in orchards of southeastern Romania. Rev. Roum. Biol. – Biol. Végét., 39, 35 – 40.
[21] Poole, R. F. (1929) Sweet potatoes infected by Schizophyllum commune. J. Elisha Mitchell Sci. Soc., 45, 137–139, plates 7–9
[22] Putterill, V. A. (1922) The biology of Schizophyllum commune Fries with special reference to its parasitism. Union of South Africa, Dept. Agr., Sci. Bull., 25, 3–35
[23] Rosenthal, J., Katz, R., DuBois, D. B., Morrissey, A., Machica O., A., (1992): Chronic maxillary sinusitis associated with the mushroom Schizophyllum commune in a patient with AIDS. Clin. Infect. Dis. 14: 46 – 48.
[24] Sinclair, W. A., Lyon, H. H. & Johnson, W. T. (1987) Diseases of trees and shrubs. Cornell Univ. Pr., New York, USA
[25] Shimizu, J., Hayashi, Y. & Fukuda, K. (2008) Wood-rot disease on cherry trees along Koganei Cherry Street, a national cultural property. Landscape Res. J., 71, 865–868 [In Japanese with English summary]
[26] Schmidt O., Liese W., 1980. Variability of wood degrading enzymes of Schizophyllum commune. Holzforschung 34: 6772.
[27] Snieškienė, V. & Juronis, V. (2001) Distribution of the fungus Schizophyllum commune Fr. in plantings of trees in the Kaunas city. Biologija, 3, 45–47
[28] Takemoto, S., Nakamura, H., Imamura, Y., and Shimane, T. (2010). Schizophyllum commune as a Ubiquitous Plant Parasite. Japan Agricultural Research Quarterly, 44(4),357-364.
[29] Togashi, K. (1950) Fruit tree pathology. Asakura, Tokyo, Japan [In Japanese].
[30] Vulinović Jelena N, Svjetlana B. Lolić, Slobodanka B. Vujčić, Milan N. Matavulj, 2018 - Schizophyllum commune – the dominant cause of trees decay in alleys and parks in the City of Novi Sad (Serbia), Biologia Serbica, 2018, 40(2): 26-33, DOI 10.5281/zenodo.2452495.
[31] ***Note on Common Wood Decay Fungi on Urban Trees of Hong Kong, Greening, Landscape and Tree Management Section, Development Bureau, The Government of the Hong Kong Special Administrative Region, 2015, 41 pag.
[32] ***Guidelines for Tree Risk Assessment and Management Arrangement on an Area Basis and on a Tree Basis’ issued by the Greening, Landscape and Tree Management Section, Development Bureau, available at www.trees.gov.hk.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

Foto: Otilia Cotuna

 

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Horticultura

Fungul Septoria tritici a fost prezent în culturile de grâu și în anul 2023, producând pagube serioase în unele zone din țară. În acest articol veți găsi informații utile despre biologia patogenului, patografia și strategia de combatere pentru a nu avea pagube în producție.

Condițiile climatice din prima decadă a lunii martie 2024 sunt foarte asemănătoare cu cele de anul trecut (aceeași perioadă) în zona de vest a țării și mai ales în județul Timiș. Ne aducem aminte că, septorioza frunzelor a făcut ravagii anul trecut prin culturile de grâu din Timiș și nu numai, deoarece a fost multă umiditate (septorioza este condiționată de umiditate). Ani la rând, septorioza a fost o boală a începutului de primăvară după care se oprea din evoluție deoarece nu mai avea umiditate. Rezerva de inocul din primăvara 2023 a dus la apariția acestui patogen în culturile de grâu încă din toamnă, când intensitatea și frecvența plantelor cu simptome a fost ridicată, pe fondul climatic favorabil (în Banat a plouat mult peste media multianuală care este de 600 mm/an). Iarna blândă a susținut infecțiile, conducând astfel la creșterea sursei de inocul pentru viitoarele infecții din primăvară.

420280309 122145163316088675 5317649878360495456 n

În această perioadă, în solele de grâu verificate, patogenul este prezent pe toate plantele (la soiurile sensibile mai ales). Umiditatea existentă (a plouat suficient) și temperaturile înregistrate susțin dezvoltarea acestui patogen, de aceea, dumneavoastră fermierii trebuie să fiți foarte atenți la culturi. În acest sens, recomand verificarea cu atenție a culturilor de grâu și aplicarea unui prim tratament dacă situația din teren impune asta (depășirea pragului economic de dăunare - PED). Primul tratament în culturile de cereale este bine să se facă în intervalul fenologic „începerea alungirii paiului - apariția frunzei stindard”, adică BBCH 30 - 39. În acest interval, în urma controalelor fitosanitare puteți alege momentul optim, funcție de nivelul infecției. Fungicidele trebuie alese cu mare atenție mai ales când vremea este umedă. Alegeți acele fungicide care sunt compuse din mai multe substanțe active (contact și sistemice). Acestea pot proteja plantele mai mult timp. După cum știți, fungicidele omologate pentru combaterea patogenilor din culturile de cereale au spectru larg de acțiune, controlând mai mulți patogeni (complex de boli foliare, boli ale tulpinii și ale spicului).

Simptome produse de Septoria tritici. Pata mai veche este deja necrozată, restul sunt galbene și fără picnidii la suprafață

Simptome produse de Septoria tritici. Pata mai veche este deja necrozată restul sunt galbene și fără picnidii la suprafață

 

Recunoașterea simptomelor

 

Simptomele pot fi recunoscute foarte ușor. Ele pot apărea încă din toamnă și chiar în timpul iernilor blânde.

Tabloul simptomatic al bolii este următorul:

  • Pe frunze apar pete care pot avea diferite forme: ovale, alungite, neregulate. Cel mai adesea, petele au formă dreptunghiulară, limitate de nervurile frunzelor;

  • Inițial, culoarea petelor este verzuie – galbenă, iar pe măsură ce patogenul evoluează capătă culoare maro;

  • La atacuri masive, întreaga frunză poate fi acoperită de pete maronii care în stadiu avansat devin cenușii și mor;

Simptom tipic. Pete dreptunghiulare cu două margini drepte delimitate de nervuri și două difuze

Simptom tipic. Pete dreptunghiulare cu două margini drepte delimitate de nervuri și două difuze

  • Uneori, de jur împrejurul petelor apare un halou clorotic;

  • Tabloul simptomatic este întregit de prezența pe suprafața petelor a unor spori negri numiți picnidii, care pot fi observați cu ochiul liber. Aceste fructificații sunt așezate în șiruri paralele cu nervurile frunzei;

  • Uneori, pe teci și pe pai pot apărea pete alungite, clorotice, care în final se brunifică [Hatman et al., 1989; Popescu, 2005; Murray et al., 2009].

418499312 122145163514088675 1356468859273860307 n

 

Realizarea infecțiilor

 

Primăvara, primele infecții sunt realizate de ascosporii aduși de vânt din zonele unde au iernat după care infecțiile secundare sunt preluate de picnosporii din picnidii. După Popescu (2005), infecțiile primare pot fi produse și de miceliile care iernează în camera substomatică și care, primăvara, în condiții favorabile de climă, vor forma picnidiile cu picnospori. În teren, adeseori pseudoteciile sunt confundate cu picnidiile, de aceea analizele de laborator sunt necesare pentru stabilirea exactă a sursei de inocul.

Picnidii de Septoria tritici care în prezența apei expulzează o masă mucilaginoasă albicioasă plină de conidii (responsabile de infecțiile secundare)

Picnidii de Septoria tritici care în prezența apei expulzează o masă mucilaginoasă albicioasă plină de conidii responsabile de infecțile secundare

Când infecția se transmite prin sămânță, după semănat, în timpul germinării, miceliul ciupercii trece din tegument în coleoptil. În această fenofază, coleoptilele infectate se vor brunifica și vor muri. Toamna, tinerele plăntuțe pot fi infectate de picnosporii din picnidii și chiar de ascosporii din pseudotecii. Pseudoteciile care eliberează ascospori pot fi găsite pe resturile vegetale în iernile blânde [Eyal et al., 1987; Popescu, 2005]. În prezent, din cauza sistemelor agricole bazate pe monocultură, rotații scurte și lipsa diversității plantelor cultivate într-o fermă, Septoria tritici trece foarte ușor de pe samulastră în noile culturi.

 

Supraviețuirea patogenului peste anotimpul de iarnă

 

Ciuperca supraviețuiește în sezonul rece pe resturile vegetale infectate, pe miriște sub formă de miceliu, picnidii cu picnospori și pseudotecii, rezistând la temperaturi scăzute. La aceste surse de inocul se adaugă sămânța. Prin miceliul din tegument și picnidiile din șanțulețul ventral și smocul de perișori al cariopselor, boala poate fi transmisă în sezonul următor [Popescu, 2005]. Picnidiile pot supraviețui în miriște câteva luni, chiar 20 de luni, timp în care își păstrează capacitatea de infecție [Hess & Shaner, 1985; Eyal et al., 1987; Popescu, 2005].

 

Condiții climatice favorabile infecțiilor

 

Septoria tritici este un fung care are nevoie de prezența umidității în toate fazele infecției (germinare, penetrare, dezvoltare). Numeroase studii arată că perioadele de umiditate trebuie să fie de aproximativ 72 de ore pentru ca patogenul să realizeze infecția. După Fournet (1969), picnosporii sunt eliberați din picnidii atunci când apa persistă pe frunze mai mult de 30 de minute. În momentul expulzării, picnosporii se află grupați într-o masă gelatinoasă, lipicioasă care îi protejează de uscăciune, mărindu-le viabilitatea. În condiții favorabile de temperatură ei vor germina. Picnosporii pot germina la temperaturi minime cuprinse între 2 - 30C. După Popescu (2005), germinarea sporilor și infecțiile se pot realiza la temperaturi minime cuprinse între 6 - 80C și umiditate relativă a aerului de 85% timp de 12 ore. Temperatura optimă este cuprinsă între 20 - 250C, iar cea maximă între 33 - 370C [Hilu & Bever, 1957]. Acest patogen are capacitatea de a se dezvolta într-un interval larg de temperaturi, dar este condiționat de prezența apei. Dacă nu sunt precipitații, infecțiile nu se realizează. Primele simptome apar pe frunze după 6 - 7 zile de la realizarea infecției, iar ciclul se încheie la 11 - 15 zile.

 

Epidemiologia bolii

 

Transmiterea sau răspândirea sporilor pe distanțe mari se face cu ajutorul vântului. Comparativ cu picnosporii care nu pot fi dispersați pe distanțe mari (stau în masa mucilaginoasă), ascosporii pot parcurge distanțe lungi cu ajutorul curenților de aer.

Masa gelatinoasă plină de conidii este expulzată de picnidii în prezența apei

Masa gelatinoasă plină de conidii este expulzată de picnidii în prezența apei

Perioadele de timp lipsite de ploaie opresc evoluția patogenului. În astfel de situații patogenul rămâne în zona bazei tulpinii, progresia bolii către etajele superioare fiind oprită. De asemenea, răspândirea bolii pe verticală și orizontală este încetinită când condițiile climatice nu sunt favorabile și rapidă atunci când temperaturile din timpul nopții sunt cuprinse între 8 - 100C și precipitațiile sunt prezente [Eyal et al., 1987].

Epidemiile de septorioză sunt favorizate de vremea umedă întreținută de ploi continue, de temperaturile moderate, de soiurile sensibile, tehnologiile aplicate și existența sursei de inocul [Eyal et al., 1987].

 

Managementul integrat al septoriozei frunzelor de grâu

 

Septoria tritici este un patogen important al culturilor de grâu, capabil să producă pagube serioase în primăverile umede (între 30 - 50% la soiurile sensibile). De aceea, în cadrul sistemului de management trebuie să ținem cont de toate măsurile care pot preveni instalarea patogenului: măsurile preventive, măsurile chimice și măsurile biologice (dacă este posibil).

Factorii de risc sunt: utilizarea soiurilor sensibile; iernile blânde și umede, primăverile cu vânt; vremea umedă întreținută de ploi continue (mai și iunie); semănatul timpuriu [Popescu, 2005].

417523994 122145163052088675 1439812834211579172 n

Măsuri profilactice

Aceste măsuri au importanță majoră în gestionarea patogenului Septoria tritici. Prin urmare, se recomandă:

  • Utilizarea soiurilor rezistente și a semințelor sănătoase, certificate;

  • Rotații corecte (duc la diminuarea sursei de inocul). Rotațiile de 3 - 5 ani la grâu au redus mult incidența septoriozei frunzelor [Shearer et al., 1974];

  • Distrugerea samulastrei;

  • Tehnologii de cultură care se bazează pe lucrările solului (arături), mai ales în anii cu infecții masive;

  • Îndepărtarea resturilor vegetale duce la diminuarea sursei de inocul [Popescu, 2005].

Măsuri chimice

Chimioterapia deține ponderea în cadrul sistemului de combatere integrată. Tratamentele pot fi făcute preventiv și curativ.

Tratarea semințelor cu fungicide sistemice este obligatorie. În România sunt omologate pentru tratarea semințelor de grâu mai multe fungicide care protejează tinerele plăntuțe de atacul patogenilor specifici, între care și septoriozele. Amintesc aici: fludioxonil; difenoconazol + fludioxonil + tebuconazol; fludioxonil + sedaxan; difenoconazol + fludioxonil +sedaxan; fludioxonil + teflutrin [după aplicația Pesticide 2.24.2.2, 2024].

Fungicidele amintite sunt omologate în general pentru Septoria nodorum. Rareori, Septoria tritici poate fi găsită pe semințe. În partea de vest a României este predominantă Septoria tritici, de aceea în acest material sunt prezentate informații despre acest patogen. Fungicidele omologate combat ambele septorioze.

În vegetație tratamentele trebuie efectuate când PED-ul a depășit 10% intensitate de atac [Popescu, 2005]. Tratamentele preventive pot fi realizate atunci când plantele de grâu se află în stadiul „al doilea nod vizibil” sau când „frunza steag este vizibilă” [Eyal et al., 1987] .

Alte PED - uri (praguri economice de dăunare) de care se poate ține cont (corelate cu fenologia plantelor):

  • Înfrățire - intensitate 30 - 50% sau 1% frunze cu fructificații;

  • Alungirea tulpinii - intensitate 15 - 20% sau 1% frunze cu fructificații;

  • Înspicat - 10% intensitate la frunza steag sau 1% frunze cu picnidii.

Recomandări importante

Combaterea patogenului se realizează în perioada de vegetație, atunci când PED-ul (pragul economic de dăunare) este atins și depășit, adică >10% intensitate de atac. Funcție de fungicidul ales, tratamentele pot fi efectuate până la începutul înfloritului (dacă sunt infecții masive).

Primul tratamentul (T1) pentru controlul septoriozei ar trebui aplicat la stadiul de creștere GS 32 (apariția frunzei 3) - acest tratament asigură control maxim pentru frunza 3 și bun pentru frunza 2.

Al doilea tratament (T2) pentru controlul septoriei ar trebui aplicat la stadiul de creștere GS 39 - este foarte important și asigură control maxim pentru frunza steag și oprește infecțiile care eventual s-au instalat pe frunza 2.

Despre tratamentul T0 (cu 2 sau 4 săptămâni înainte de T1), studiile arată că rareori este eficient.

Momentul optim pentru aplicarea primului tratament trebuie ales cu mare atenție, ținând cont de starea fitosanitară a culturilor și de prognoza climatică. Primul tratament pentru combaterea septoriozei ar trebui efectuat în intervalul fenologic „începerea alungirii paiului - apariția frunzei stindard” adică BBCH 30 - 39.

Fungicidele omologate în România pentru combaterea septoriozei la grâu (dar și pentru alți patogeni ai cerealelor) sunt: Azoxistrobin; bixafen +spiroxamină + trifloxistrobin; Protioconazol + tebuconazol; protioconazol + spiroxamină; protioconazol + trifloxistrobin; protioconazol + spiroxamină + trifloxistrobin; bixafen + tebuconazol; Difenoconazol; Piraclostrobin; Fluxapyroxad; fluxapiroxad + piraclostrobin; fluxapyroxad + metconazol; fluxapyroxad + mefentrifluconazol; mefentrifluconazol + piraclostrobin; Mefentrifluconazol; Metconazol; Protioconazol; Tebuconazol; bixafen + protioconazol; boscalid + kresoxim metil; difenoconazol + tebuconazol; difenoconazol + fluxapiroxad; bromuconazol + tebuconazol; Proquinazid + protioconazol; Folpet; Kresoxim - metil + mefentrifluconazol [după aplicația PESTICIDE 2.24.2.2, 2024].

IMPORTANT!

Când intensitatea atacului este ridicată, fungicidele trebuie alese cu atenție. În astfel de situații se recomandă utilizarea fungicidelor compuse din mai multe substanțe active cu moduri diferite de acțiune (contact și sistemice). Combinațiile de mai multe substanțe active asigură protecție pentru o perioadă mai lungă de timp. Marea majoritate a fungicidelor omologate pentru combaterea patogenilor din culturile de cereale au spectru larg de acțiune, controlând mai mulți patogeni.

Când apa nu este prezentă, masa gelatinoasă plină de conidii ia forma unor cârcei

Când apa nu este prezentă masa gelatinoasă plină de conidii ia forma unor cârcei

Într-un sezon de vegetație este foarte important să alternați substanțele active pentru a evita apariția fenomenului de rezistență. De asemenea, respectați dozele recomandate de producători (se observă o tendință a fermierilor de a supradoza). Nerespectarea dozelor recomandate de producători duce la instalarea fenomenului de rezistență. Tratamentele fitosanitare trebuie aplicate în zile fără vânt și cu temperaturi mai mari de 5 0C (atât noaptea cât și ziua). Utilizarea echipamentelor de protecție este obligatorie (pesticidele pot produce boli grave). Respectați timpii de pauză (la unele fungicide este de 61 de zile).

Măsuri biologice

Combaterea acestui patogen cu ajutorul agenților biologici nu este posibilă în prezent (patogenii în general sunt mai greu de combătut). Totuși, agenții biologici sunt în atenția cercetătorilor. Se testează intens bioagenții Trichoderma spp., Bacillus megaterium, Pseudomonas sp., Gliocadium roseum, Sporotrichum mycophillum [Popescu, 2005; Ponomarenko, 2011]. Unele studii raportează rezultate foarte bune în cazul agentului biologic B. megaterium. S-a constatat că, acesta oprește dezvoltarea septoriozei cu până la 80%. Pe lângă B. megaterium, se cercetează bacteriile antagonice din genul Pseudomonas, mai ales că dezvoltarea lor nu este stânjenită de fungicidele utilizate. Testele se fac pe suprafețe mici sau în spații protejate de aceea, de multe ori rezultatele sunt foarte bune. Aplicate pe suprafețe mari, rezultatele nu mai sunt cele scontate (influența factorilor climatici, pedologici etc).

În consecință, aceste biofungicide trebuie mai mult testate în câmp pentru a-și dovedi eficacitatea [Ponomarenko, 2011]. În fermele ecologice din Timiș, semințele de grâu sunt tratate cu produse pe bază de Trichoderma spp., Bacillus subtilis, micorize arbusculare și extract de alge (am asistat la astfel de tratamente). Aceste produse asigură o protecție destul de bună în primele stadii de vegetație ale plantelor.

Cu sprijinul parteneriatului dintre compania Bayer și USV „Regele Mihai I” din Timișoara am adus în atenția dumneavoastră informații importante despre prezența fungului Septoria tritici.

 

Bibliografie

Eyal Z., A. L. Scharen, J. M. Prescott, M. van Ginkel, 1987 - The Septoria Diseases of Wheat: Concepts and methods of disease management. Mexico, D.F.: CIMMYT. 52 pp.
Fournet J., 1969 - Properties et role du cirrhe du Septoria nodorum Berk. Ann . Phytopathol. 1:87 - 94.
Hatman M., Bobeș I., Lazăr Al., Gheorghieș C., Glodeanu C., Severin V., Tușa C., Popescu I., Vonica I., 1989 - Fitopatologie, Editura Didactică și Pedagogică, București, 468 p.
Hess D. E., G. Shaner, 1985 - Effect of moist period duration on septoria tritici blotch of wheat. Pp. 70-73 in A.L. Scharen, ed. Septoria of Cereals. Proc. Workshop, August 2 - 4, 1983, Bozeman, MT. USDAARS Publ. No. 12. 116 pp.
Hilu H. M., W. M. Bever, 1957 - Inoculation, oversummering and susceptpathogen relationship of Septoria tritici on Triticum species. Phytopathology 47: 474 - 480.
Murray T. D., Parry D. W., Cattlin N. D., 2009 – Diseases of small grain cereal crops, Manson Publising Ltd, London, U. K., 142 pp.
Ponomarenko A., S. B. Goodwin, G. H. J. Kema, 2011 - Septoria tritici blotch (STB) of wheat. Plant Health Instructor. DOI:10.1094/PHI-I-2011-0407-01.
Popescu Gheorghe, 2005 - Tratat de patologia plantelor, vol. II, Ed. Eurobit, 341 p.
Shearer B. L., R. J. Zeyen, U. Ooka, 1974 - Storage and behaviour in soil of Septoria species isolated from cereals. Phytopathology 64: 163 - 167.

 

Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor

otilia

Foto: Otilia Cotuna

Abonamente Revista Fermierului – ediția print, AICI!

Publicat în Protecția plantelor

Rosellinia necatrix este un fung care atacă sistemul radicular al pomilor și nu numai, producând boala numită „putregaiul alb al rădăcinilor”. Este o boală extrem de periculoasă și care nu poate fi combătută. Patogenul are capacitatea să omoare pomii, fie într-o perioadă mai lungă de timp, fie mai scurtă, în funcție de rezistența gazdei.

Din păcate, ne confruntăm în județul Timiș cu acest patogen în livezile tinere de cais și piersic înființate în sistem ecologic superintensiv. Putem discuta de focare? Nu știm deocamdată, vom vedea evoluția bolii și apoi vom emite concluzii. Au venit pomii bolnavi din pepiniere? Nici asta nu putem afirma deoarece nu am analizat aceste aspecte. Fermierii au observat că pomii nu au vigoare după ce i-au plantat. Piersicul și caisul sunt specii foarte sensibile care reacționează la stresul produs de patogeni și dăunători prin producerea de gome masive care au atras atenția pomicultorilor. Analizând pomii cu leziuni pe tulpini și gome masive am constatat că sistemul radicular este acoperit de micelii albe specifice fungului Rosellinia necatrix.

cotunaotilia

Rosellinia necatrix este un fung cu potențial distructiv extrem de ridicat pentru multe plante lemnoase (și nu numai) din zonele temperate, tropicale și subtropicale din lume. Acest patogen are un număr mare de plante gazdă, aproximativ peste 170 plante lemnoase,cât și erbacee (Teixeira de Sousa, 1985; Petrini, 1993). Pomii și arbuștii fructiferi, vița-de-vie, arborii din păduri, plantele ornamentale pot fi infectate, la fel și cartoful, lucerna, fasolea, bulbii de narcise, lalele etc. După Hatman et al. (1989), patogenul poate distruge pomii în pepiniere. Se poate spune că, datorită răspândirii sale pe cinci continente, R. necatrix este un fung cosmopolit (Petrini, 1993; Farr et al., 2006).

 

Simptome produse de patogen sau cum recunoaștem pomii bolnavi

 

Plantele bolnave prezintă simptome radiculare, dar și aeriene uneori. Însă, adeseori patogenul este dificil de diagnosticat din cauza modului de viață al fungului și a faptului că, de multe ori, pomii nu prezintă simptome aeriene. Simptomele aeriene se pot instala lent sau rapid. Atunci când se instalează rapid, se observă o scădere bruscă a vigorii pomilor, ofilirea frunzelor (defolieri premature) și moartea pomilor în final (Pliego et al., 2012). Când simptomele aeriene se instalează lent, se observă o creștere întârziată la pomii bolnavi. De obicei, astfel de pomi au frunzișul mai rar. Pe lângă asta, apar simptome de ofilire, cloroză, uscarea lăstarilor, ramurilor. În câțiva ani, acești pomi vor muri (Guillaumin et al., 1982).

284966987 2191238117702161 1607758284538470770 n

Ciuperca R. necatrix atacă rădăcinile plantelor producând boala numită „putregaiul alb al rădăcinilor”. Inițial, la pomii bolnavi se observă o scădere a vigorii și ofiliri ale frunzelor. În cazurile grave pomii se pot usca rapid. Dacă se verifică sistemul radicular al unui pom bolnav se observă că rădăcinile și coroana radiculară prezintă micelii albe, bumbăcoase și cordoane miceliene sau agregări de hife numite rizomorfe. La început, rizomorfele au culoare albă, după care, pe măsură ce îmbătrânesc se închid la culoare. Hifele fungului pot pătrunde în zona subcorticală ajungând la cambiu și lemn și pot progresa către trunchi. Fungul pătrunde în lemn mai ales când are condiții de umiditate ridicată. Lemnul bolnav se va brunifica și va căpăta o textură buretoasă, spongioasă (Hatman et al., 1989). Tipic pentru patogen este formarea de micelii sub formă de evantai la suprafața scoarței dar și la interior (Teixeira de Sousa et al., 1995). Aceste micelii invadează rădăcinile, ducând în cele din urmă la putrezirea lor. Pe măsură ce miceliul îmbătrânește, culoarea se schimbă în gri verzui și chiar negru uneori. Se formează astfel, plăci miceliene nedefinite în interiorul scoarței și hife miceliene slab agregate care duc la brunificarea și putrezirea rădăcinilor (Pliego et al., 2012).

La pomii bolnavi se observă adesea formarea lăstarilor pe tulpini.

 

Aspecte generale despre biologia și epidemiologia patogenului

 

Rosellinia necatrix supraviețuiește peste iarnă sub formă de scleroți și rizomorfe pe rădăcinile bolnave, dar și în sol. În mod saprofit trăiește pe resturile de rădăcini putrezite (Cazorla et al., 2006).

Temperatura optimă pentru dezvoltarea miceliului este cuprinsă în intervalul 16 - 18 grade C (Hatman et al., 1989).

284932887 2191238871035419 7591635712067075578 n

Fungul formează mai multe tipuri de spori: forma asexuată cu clamidospori (mai rar) și conidiospori (grupați în coremii ce se formează pe scleroți) și forma sexuată cu peritecii cu asce și ascospori (Petrini, 1993; Perez - Jimenez et al., 2003). Rolul acestor spori în epidemiologia ciupercii nu este pe deplin clară. Delatour et Guillamin (1985), arată că, agentul patogen se răspândește prin contactul direct cu rădăcinile plantei gazdă. Rizomorfele fungului se extind de la o plantă la alta, putând infecta suprafețe mari de teren în acest mod (Hatman et al., 1989). Atunci când cordoanele miceliene ating o rădăcină sănătoasă, rețeaua de micelii proliferează și acoperă suprafața radiculară cu micelii difuze uneori sau cu fire miceliene. Apoi se formează agregatele miceliene (rizomorfe) care se pot observa cu ochiul liber și care ajută în diagnosticarea corectă a patogenului. Hifele fungului pătrund de obicei prin deschiderile naturale (lenticele), prin răni sau chiar direct prin formarea unui sclerot de penetrare, invadând xilemul primar și secundar (Pliego et al., 2009).

 

Condițiile propice pentru realizarea infecțiilor și dezvoltarea fungului

 

Pentru dezvoltare, Rosellinia necatrix necesită mai multe condiții: sol umed, temperatură optimă, oxigen, pH corespunzător (Petrini et al., 1993). Temperatura optimă necesară dezvoltării este cuprinsă între 22 - 24 grade C. Fungul nu crește la temperaturi sub 4 grade C sau peste 32 grade C. Nu este inhibat de solurile cu pH ridicat, putându-se dezvolta la pH cuprins între 6 - 8 (Perez - Jimenez, 1997; Gupta et Gupta, 1982).

Umiditatea solului este foarte importantă pentru patogen, la fel și aerarea. O aerare slabă nu este favorabilă, de aceea, în astfel de situații, distribuția fungică este limitată la suprafața solului (Makambila, 1976). De asemenea, lumina inhibă dezvoltarea hifelor miceliene, omorându-le. Prezența materiei organice în sol este necesară și ajută la dezvoltarea miceliilor.

Micelii de Rosellinia pe rădăcini de cais. Se observă că rădăcinile sunt putrezite deja. Plantat în 2021

Micelii de Rosellinia pe rădăcini de cais. Se observă că rădăcinile sunt putrezite deja. Plantat în 2021

 

Ce putem face pentru combaterea acestui patogen?

 

Patogenul este foarte greu de controlat. De aceea, măsurile de prevenție sunt foarte importante, deoarece restul măsurilor nu sunt eficiente.

Ca să evitați astfel de situații, plantați puieți sănătoși într-un sol neinfectat. Este cel mai sigur că patogenul va sta la distanță. Drenați apa din sol (dacă este cazul), irigați echilibrat și aplicați îngrășăminte organice.

Micelii în formă de evantai, tipice pentru Rosellinia necatrix, pe rădăcini de piersic plantat în 2021

Micelii în formă de evantai tipice pentru Rosellinia necatrix pe rădăcini de piersic plantat în 2021

Înainte de înființarea unei plantații este important să ne asigurăm că solul nu conține micelii și rizomorfe de Rosellinia necatrix, mai ales atunci când înainte au fost pomi. Se poate efectua o solarizare a terenului peste vară, dacă testele de sol arată prezența fungului (Ruano - Rosa et al., 2007). În ce constă solarizarea? Peste solul prelucrat ca și un pat germinativ se pune o folie transparentă pentru a absorbi radiația solară. Înainte de acoperire se recomandă efectuarea unei irigări pentru a umezi solul. Temperatura ridicată coroborată cu timpul de expunere poate reduce mult din sursa de inocul. Pe lângă asta, omoară și alți patogeni din sol, insecte și chiar semințe de buruieni.

Micelii și rizomorfe de Rosellinia necatrix pe tumori de Agrobacterium tumefaciens la piersic plantat în 2021. Rosellinia și Agrobacterium în tandem la piersic

Micelii și rizomorfe de Rosellinia necatrix pe tumori de Agrobacterium tumefaciens la piersic plantat în 2021. Rosellinia și Agrobacterium în tandem la piersic

Un aspect important este ca materialul de plantat să fie sănătos, de aceea, pomicultorii trebuie să verifice cu atenție starea de sănătate a puieților înainte de plantare.

În caz de istoric de boală, se recomandă utilizarea soiurilor rezistente la patogen.

Atunci când apar infecții în livadă, pomii bolnavi trebuie scoși rapid. Se recomandă arderea lor (cei mai mulți autori recomandă) în mod organizat, în așa fel încât să nu poluăm mediul. Un mod de a arde materialul lemnos rezultat în urma defrișărilor este pentru încălzirea locuințelor. Trebuie acordată atenție deosebită îndepărtării totale a rădăcinilor și chiar a materiei organice care a venit în contact cu acestea, deoarece ciuperca poate trăi latent mai mulți ani, producând infecții doar când are condiții favorabile (Lopez - Herrera, 2000).

Rădăcină de piersic cu rizomorfe de Rosellinia și tumori de Agrobacterium. Plantat în 2021

Rădăcină de piersic cu rizomorfe de Rosellinia și tumori de Agrobacterium. Plantat în 2021

Pe suprafețe mici, când apar infecții, se pot expune rădăcinile pomilor la lumină și căldură vara. Această operațiune este dificil de realizat pe suprafețe mari.

Când patogenul s-a instalat într-o livadă, trebuie acordată atenție deosebită irigării. Din păcate, în multe livezi tinere din Timiș, patogenul este întreținut de umiditatea continuă. Între irigări trebuie lăsate pauze pentru ca solul să aibă timp să se usuce (Farre et al., 2005).

Rizomorfe (acele cordoane albe care seamănă cu niște rădăcinuțe) și micelii în formă de evantai pe rădăcini de cais

Rizomorfe acele cordoane albe care seamănă cu niște rădăcinuțe și micelii în formă de evantai pe rădăcini de cais

Scurgeri masive de gome

Scurgeri masive de gome

 

Putem ține sub control patogenul prin metode chimice?

 

Deși există studii care arată o oarecare eficacitate a unor fungicide asupra acestui fung, realitatea este că, din păcate, este foarte greu să luptăm chimic. Fungicidele utilizate pentru patogenii din sol au fost scoase rând pe rând (tiabendazolii, tiofanat - metilul etc), iar astăzi nu prea mai avem cu ce ține sub control astfel de organisme. Cu privire la substanțele chimice utilizate în combaterea R. necatrix s-a observat că, în prima fază, fungul dă semne că s-ar opri din evoluție. Cu toate acestea, foarte multe raportări arată că, uneori simptomele bolii au revenit în forță după tratamente. Acest lucru este explicat prin faptul că fungicidele (aplicate uneori poate incorect și neajungând la sistemul radicular) ucid microflora benefică din zona rădăcinilor (Bonilla et al., 1995; Aranzazu et al., 1999; Sugimoto, 2002).

Tumoră de Agrobacterium acoperită de micelii și rizomorfe de Rosellinia necatrix

Tumoare de Agrobacterium acoperită de micelii și rizomorfe de Rosellinia necatrix

În 2007, Lopez - Herrera et Bonilla, arată eficacitatea foarte bună a fluazinamului asupra Roselliniei necatrix. În România, din câte știu, acest fungicid este omologat pentru combaterea manelor.

 

Este combaterea biologică o alternativă viabilă pentru controlul acestui patogen?

 

Tot mai multe studii arată eficiența utilizării agenților biologici în controlul fungului Rosellinia necatrix. Sunt testați agenți biologici fungici, bacterieni și virali. Interes deosebit există pentru speciile de Trichoderma (T. harzianum. T. atroviride, T. virens, T. cerinum), pentru bacteriile Pantoea agglomerans, Pseudomonas fluorescens, Bacillus subtilis (Cazorla et al., 2001; Carmatti - Sentori et al., 2008; Ruano - Rosa et al., 2010).

Deși există interes pentru combaterea biologică a fungului, totuși succesul este variabil, oscilant. S-a constatat că, în sere (condiții controlate), agenții biologici au dat rezultate foarte bune de cele mai multe ori. În câmp, situația se modifică și marea majoritate a specialiștilor sunt de acord că eficacitatea agenților biologici scade foarte mult, fiind influențată de factorii biotici și abiotici (Thomashow et Weller, 1996; Lee et Cooksey, 2000).

Scoarța și-a schimbat culoarea în zona coletului la piersic

Scoarta și a schimbat culoarea în zona coletului la piersic

 

Bibliografie

Aranzazu, F., Cárdenas, J., Mújica, J., Gómez, R., 1999, Manejo de las llagas radicales (Rosellinia sp.). Boletín Sanidad Vegetal, 23, 35.
Bonilla, J. E., Macias, C. P., Mendoza, Z. C., Ponce, G. F., 1995, Manejo integrado de las enfermedades radicales del manzano (Malus pumilla Mill.) en Zacatlan, Puebla México: I. Ensayo Revista Chapingo, Ser. Protección Vegetal. 2, 63 – 66.
Carmatti - Sartori, V., Valdebenito - Sanhueza, R. M., Ribeiro, R. T., 2008, Development of Pantoea agglomerans under different temperatures, pH and carboxymethyl cellulose rates and their effect on Rosellinia necatrix control. Summa Phytopathol. 34, 13 – 17.
Cazorla, F. M., Bloemberg, G. V., Lugtenberg, B. J. J., 2001, Biocontrol of white root rot on avocado plants using rhizobacterial strains. IOBC WRPS Bull. 24, 79 – 82.
Cazorla F. M., Duckett S. B., Bergström E. T., Noreen S., Odijk R., Lugtenberg B. J. J., Thomas - Oates J. E., Bloemberg G. V., 2006, Biocontrol of Avocado Dematophora Root Rot by Antagonistic Pseudomonas fluorescens PCL1606 Correlates With the Production of 2-Hexyl 5-Propyl Resorcinol. Phytopathology, 19 (4): 418 – 428.
Delatour, C., Guillaumin, J. J., 1985, Importance des pourridiés dans les regions tempérées. Eur. J. Forest Pathol. 15, 258 – 263.
Farré, J. M., Hermoso, J. M., Torres, M. D., 2005, Alternate irrigation of avocados: effects on growth, cropping and control of Rosellinia necatrix. Calif. Avocado Soc. Yearbook, 87, 117 – 125.
Farr, D. F., Rossman, A. Y., Palm, M. E., McCray, E. B., 2006, Fungal Databases, Systematic Botany and Mycology Laboratory, Agricultural Research Service, US Department of Agriculture. Available at: http://nt.ars-grin.gov/fungaldatabases/ [accessed on May 11, 2021].
Guillaumin, J. J., Mercier, S., Dubos, B., 1982, Les pourridiés á Armillariella et Rosellinia en France sur vigne, arbres fruitiers et cultures florales I. Etiologie et symptomatologie. Agronomie, 2, 71 – 80.
Gupta, V. K., Gupta, S. K., 1992, Management of white root rot of apple with fungicide drenching. Indian Phytopathol. 45, 239 – 240.
Hatman M., Bobeş I., Lazăr A., Gheorghieş C., Glodeanu C., Severin V., Tuşa Corina, Popescu I., Vonica I., 1989, Fitopatologie, Edit. Did. şi Ped. Bucureşti, p. 185 - 188.
Lee, S. W., Cooksey, D. A., 2000, Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungus. Appl. Environ. Microbiol. 66, 2764 – 2772.
López-Herrera, C. J., Zea-Bonilla, T., 2007, Effects of benomyl, carbendazim, fluazinam and thiophanate methyl on white root rot of avocado. Crop Prot. 26, 1186 – 1192.
López-Herrera, C. J., 2000, Podredumbre blanca de la raíz causada por Rosellinia necatrix. In: Enfermedades de los Frutales de Pepita y Hueso, Monografía de la Sociedad Española de Fitopatología No 3: 79 – 81 (Montesinos, E., Melgarejo, P., Cambra, M. and Pinochet, J., eds), p. 147. Madrid: Ediciones Mundi-Prensa.
Petrini L. E., 1993, Rosellinia species of the temperate zones. Sydowia, 1993; 44: 169 – 281.
Makambila, C., 1976, Contribution à l’étude de Rosellinia necatrix (Hart.) Berl. et du Rosellinia querciana (Hart.). PhD Thesis, Université de Clermont Ferrand.
Pliego C., López-Herrera C., Ramos C., Carzola F. M., 2012, Developing tools to unravel the biological secrets of Rosellinia necatrix, an emergent threat to woody crops. Mol Plant Pathol, 13(3): 226 - 239.
Pliego, C., Kanematsu, K., Ruano-Rosa, D., De Vicente, A., López-Herrera, C., Cazorla, F. M., Ramos, C., 2009, GFP sheds light on the infection process of avocado roots by Rosellinia necatrix. Fungal Genet. Biol. 46, 137 – 145.
Pérez-Jiménez, R. M., Zea-Bonilla, T., López-Herrera, C. J., 2003, Studies of R. necatrix perithecia found in nature on avocado roots. J. Phytopathol. 151, 660 – 664.
Ruano-Rosa, D., Schena, L., Ippolito, A., López-Herrera, C. J., 2007, Comparison of conventional and molecular methods for detection of Rosellinia necatrix in avocado orchards in southern Spain. Plant Pathol. 56, 251 – 256.
Ruano-Rosa, D., del Moral-Navarrete, L., López-Herrera, C. J., 2010, Selection of Trichoderma spp. isolates antagonistic to Rosellinia necatrix. Spanish J. Agric. Res. 8, 1084 – 1097.
Sugimoto, K., 2002, Fluazinam (Frowncide ®)—a novel and effective method of application against white and violet root rot. Agrochem. Jpn. 80, 14 – 16.
Teixeira de Sousa A. J., Giillaumin J. J., Sharples G. P., Whalley A. J. S., 1995, Rosellinia necatrix and white root rot of fruit trees and other plants in Portugal and nearby regions. Mycologist, 9: 31 - 33.
Teixeira de Sousa A. J., 1985, Lutte contre Rosellinia necatrix (Hartig) Berlese, agent du pourridie laineux: sensibilite de quelques especes vegetales et lute chimique. Eur J Forest Pathol, 15: 323 - 332.
Thomashow, L. S., Weller, D. M., 1996, Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Plant-Microbe Interactions, Vol. 1 (Stacey, G. and Keen, M., eds), pp. 187 – 235. New York: Chapman and Hall.

 

Articol scris de: DR. ING. OTILIA COTUNA, CSIII Laborator de protecția plantelor SCDA LOVRIN, Șef lucrări USAMVB Timișoara

Puteți accesa articolul și pe www.scdalovrin.com la secțiunea „Articole de informare”.

Foto: Otilia Cotuna

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Horticultura
Vineri, 29 Aprilie 2022 23:56

Făinarea, prezentă în lanurile de grâu

În culturile de grâu mai avansate în vegetație și la soiurile sensibile, Blumeria graminis își face simțită prezența. Condițiile climatice actuale (răcoare și umiditate) sunt pe placul acestui fung. Dacă vremea se va menține răcoroasă și umedă este bine ca fermierii să fie atenți la evoluția acestui patogen (dacă temperaturile cresc, făinarea se oprește din evoluție).

Pe lângă Blumeria graminis, în contextul climatic actual ne putem aștepta și la infecții produse de fungii Puccinia striiformis (rugina galbenă), Rhizoctonia cerealis (rizoctonioză), Gauemannomyces graminis (înnegrirea bazei tulpinii), Pseudocercosporella herpotrichoides (pătarea în ochi a bazei tulpinii). Așadar, controlați culturile săptămânal și executați tratamentele fitosanitare la momentul optim.

În sprijinul dumneavoastră vin cu informații și fotografii actuale ale fungului Blumeria graminis.

Cultură comparativă de grâu (28 soiuri)

Cultură comparativă de grâu 28 soiuri

 

Făinarea cerealelor păioase - Blumeria graminis (D. C.) Speer. Ce ar trebui să știe fermierii despre acest patogen?

 

Fungul Blumeria graminis poate provoca la grâu pierderi cantitative de recoltă de până la 45%, dar şi pierderi în ceea ce priveşte calitatea (afectează însuşirile de panificaţie) prin zbârcirea sau şiştăvirea cariopselor [Zeller et al., 2002].

Această boală este considerată una din principalele afecțiuni ale grâului din zonele cu climat semicontinental sau maritim şi poate afecta foarte serios recolta de boabe. Se întâlneşte pe arii întinse în fiecare an, fiind larg răspândită pe toate continentele, în special în regiunile umede.

Pierderile provocate variază de la an la an, depinzând cu precădere de condiţiile vremii. După Everts et al. (2001), făinarea afectează coacerea grâului şi calitatea morăritului. Soiurile susceptibile netratate pot avea pierderi de recoltă de 16% când este infectată frunza stindard înaintea apariţiei spicului. Când infecţia ajunge la frunza stindard, pierderile potenţiale pot ajunge la 25%. În contrast, soiurile rezistente pot pierde 5% până la 8% din producţie dacă făinarea urcă de la frunzele bazale la frunza stindard.

În Câmpia Banatului făinarea este prezentă în fiecare an în lanurile de grâu, cu frecvențe și intensități de atac diferite funcție de condițiile climatice.

279444975 2167735356719104 2876587534082478773 n

 

Cum recunoaștem făinarea

 

Patogenul Blumeria graminis se localizează pe toate organele aeriene ale plantelor de grâu. Boala debutează cu pete clorotice sau galbene pe frunzele de la baza plantelor. Primele simptome sunt aglomerări mici, pâsloase, de culoare albă (miceliile sau corpul ciupercii), izolate sau confluente, care în timp se extind la tecile frunzelor, la tulpini ca un manşon şi apoi la spic. Pe măsură ce boala evoluează, culoarea albă a miceliului virează la galben închis şi leziunile respective devin prăfoase, ceea ce înseamnă că ciuperca a fructificat anamorf (asexuat) prin conidiofori cu conidii sau oidii. Sporogeneza anamorfă apare ca o pulbere fină, albă, de unde şi denumirea populară de „făinare”. Când începe maturizarea plantelor de grâu, aglomerările de hife miceliene, devin gri şi apoi uşor brune la culoare şi cu ochiul liber sunt observabile punctişoare negre asemănătoare cu boabele de piper (peritecii sau cleistotecii cu asce şi ascospori), sporogeneza telomorfă a ciupercii sau faza galben – roşcată. Sub pâsla miceliană, uşor desprinsă cu degetele mâinilor, ţesuturile plantelor sunt brune, necrotice sau moarte [Hatman et al., 1989; Eliade, 1990; Lipps, 1996; Baicu et Seşan, 1996; Popescu, 1998, 2005].

Manifestarea la exteriorul plantelor, specifică ciupercii Blumeria graminis, devine severă, amplă, adică ia caracter de masă sau de epidemie şi chiar de pandemie, dacă condiţiile de mediu sunt favorabile patogenului, dacă sunt prezente în cultură soiuri de grâu sensibile cât şi rase fiziologice sau patotipuri virulente [Prescott et al., 1986; Popescu, 1998; Bissonette, 2002].

Pâslă miceliană de culoare albă pe teaca frunzelor de grâu produsă de fungul Blumeria graminis

Pâslă miceliană de culoare albă pe teaca frunzelor de grâu produsă de fungul Blumeria graminis

 

Aspecte generale despre biologia și epidemiologia patogenului

 

Ciuperca trece anotimpul rece sub formă de cleistotecii pe samulastra de grâu infectat. Iernarea şi perpetuarea de la un an la altul a fost şi este studiată de diferiţi cercetători, dar ca şi alte probleme şi în aceasta sunt multe lucruri neelucidate sau controversate. La Blumeria graminis pe Triticum vulgare, cleistoteciile se formează din abundenţă şi de obicei în fiecare an în condiţiile din ţara noastră (Eliade, 1990). Cleistoteciile se formează pe frunze, pe tulpini şi teci şi ciuperca iernează pe acestea, iar în primăvara următoare ascosporii produc infecţiile primare (Sandu-Ville, 1967; Eliade, 1990). După Davis et al. (2002), ciuperca străbate iarna sub formă de structuri întunecate, generatoare de spori, numite cleistotecii, care eliberează sporii (ascosporii) purtaţi de vânt primăvara. De asemenea, poate străbate iarna ca miceliu pe plantele de grâu şi produce spori (conidii) care pot cauza și ei infecţii iniţiale. Conidiile din leziunile rezultate sunt purtate de vânt pentru ciclul secundar al bolii la intervale de 10 zile. Alți autori arată că patogenul poate să ierneze sub formă de micelii la frunzele bazale şi pe teci la grâul de toamnă, iar peste vară sub formă de cleistotecii în resturile vegetale ale miriştei sau şi în spermosfera seminţelor, dar fără semnificaţie biologică (Yang et al., 1992). Infecţiile de toamnă constituie sursa principală de răspândire a bolii, miceliul rezistând peste iarnă [Hulea et al., 1975; Hatman et al., 1989; Popescu, 1998; Bissonnette, 2002].

Dezvoltarea fungului este influențată în principal de factorii de mediu, cum ar fi: temperatura, umiditatea (roua, umiditatea relativă a aerului, precipitaţiile), lumina, nebulozitatea, viteza vântului. Ciuperca Blumeria graminis f. spec. tritici realizează infecţia grâului şi-şi manifestă patogenitatea în limite largi de temperatură. În ceea ce priveşte umiditatea, ciuperca este mai agresivă şi virulentă la valori mai scăzute (37 - 56%) decât la o atmosferă cu hidroscopicitate de 79 - 97%; umiditatea relativă a aerului şi precipitaţiile, interferează pozitiv cu gradul de atac al ciupercii, dar cu o intensitate redusă la jumătate faţă de rouă. Însuşirile de patogenitate ale ciupercii sunt influenţate şi de lumină şi de întuneric; de exemplu la întuneric lanţurile de oidii sunt mai lungi, cu vitalitate scăzută şi o slabă putere de infecţiozitate datorită conţinutului scăzut de carbohidraţi; nebulozitatea de 3 - 6 este la limita semnificaţiei (Sandu-Ville, 1967; Kocourek et Vechet, 1984; Eliade, 1990; Yang et al., 1992; Friedrich, 1995 a şi b; Deacon, 1997, 2006; Chet, 2003; Cotuna et Popescu, 2005b).

În condiții de răcoare și umezeală (temperaturi între 17 - 220C și UR% între 85 - 100%), făinarea este puternic extensivă (Prescott et al., 1986; Williams et Littlefield, 1995). Alți autori arată că, umiditatea ridicată de 85 - 100% (în prezenţa sau lipsa ploii) şi temperaturile cuprinse între 15 și 250 C, favorizează dezvoltarea bolii; dacă temperaturile cresc, boala este remarcabil încetinită la (Kochourek et Vechet, 1984; Bailey et al., 1995; Lipps, 1996). Ploile puternice nu sunt favorabile producerii de spori sau creşterii miceliului pe suprafaţa frunzelor [Evans, 1997; Chet, 2003].

Factorii tehnologici (monocultura sau absenţa rotaţiei, densitatea mare a plantelor, irigarea, excesul sau carenţa elementelor nutritive, întârzierea semănatului), coroborați cu cei climatici, favorizează apariția epidemiilor şi chiar a pandemiilor de făinare în culturile de grâu, orz, secară, ovăz.

279575260 2167736073385699 4234654286013294473 n

 

Cum ținem sub control făinarea

Măsuri profilactice

Măsurile agro - fitotehnice au un rol important în prevenirea făinării la grâu, dar și la alte cereale, și constau în respectarea rotaţiei culturilor, executarea corectă a lucrărilor solului, semănatul la date şi densităţi optime, folosirea soiurilor rezistente, utilizarea raţională a fertilizării, irigaţia judicioasă acolo unde este cazul [Hatman et al., 1986; Iacob, 2003]. Pe de altă parte, sunt cele mai ieftine metode de prevenire. Mulţi producători de cereale utilizează metode culturale de combatere a făinării. Aceştia folosesc soiuri moderne, cu productivitate ridicată, rotaţia culturilor, date potrivite pentru lucrări, fertilizare echilibrată şi practici agronomice adecvate, care duc la limitarea pierderilor de producţie datorate făinării.

Măsuri chimice

Combaterea este economică dacă, după înfrăţit, pe ultimele trei frunze sau înainte de înflorit pe frunza stindard sunt peste 25 pete pâsloase, adică s-a realizat valoarea PED-ului, şi factorii climatici (temperatură, umiditate, ploaie, ceaţă, rouă) continuă să se întrunească în limite optime pentru dezvoltarea bolii [Popescu, 1998].

Fungicidele omologate pentru combaterea făinării grâului în România sunt suficiente. Aceste fungicide au spectrul larg de acțiune și combat și alți patogeni. Aduc în atenție câteva dintre aceste substanțe: azoxistrobin, tebuconazol, bixafen + protioconazol, tetraconazol, difenoconazol + fluxapyroxad + metconazol, bixafen + spiroxamină + trifloxistrobin, fenpropidin, azoxistrobin + tebuconazol, ciflufenamid, difenoconazol, benzovindiflupir, boscalid + kresoxim metil, protioconazol + spiroxamină + tebuconazol, metrafenonă, sulf, ciprodinil, fluxapyroxad, protioconazol, protioconazol + spiroxamină, fluxapyroxad + metconazol, tebuconazol + trifloxistrobin, protioconazol + spiroxamină + trifloxistrobin, protioconazol + trifloxistrobin, fluxapyroxad + piraclostrobin, piriofenona, mefentrifluconazol, fluxapyroxad + mefentrifluconazol, izopirazam + protioconazol, bixafen + tebuconazol, proquinazid + protioconazol etc [după Pesticide 2.22.3.1, 2022].

Stropirile aplicate la faza de un nod (stadiu de creştere GS 31) au controlat de timpuriu făinarea, dar cel mai bun control şi cel mai bun răspuns al recoltei a fost asociat cu stropirile aplicate la emergerea frunzei stindard (GS 39 – 43) sau apariţia spicului (GS 59), stadii dezvoltate înainte de creşterea atacului. Stropirile aplicate la apariţia spicului şi cele la începerea extinderii frunzei stindard, de asemenea au determinat o bună protecţie a spicului [Harwick et al., 1994].

În combaterea biologică a făinării grâului în condiții de câmp prezintă interes mai mulți agenți biologici: Bacillus subtilis, B. chitinospora, B. pumilus, Pseudomonas fluorescens, Rhodotaula sp. (Xiaoxi et Wenhong, 2011; Shahin et al., 2019).

cotuna fainare

Bibliografie

Baicu T., Seşan Tatiana Eugenia, 1996 – Fitopatologie agricolă, Ed. Ceres Bucureşti, 315, p. 137 – 139;
Bailey J. E., Jarrett R., Leath S., 1995 – Disease Identification North Carolina Cooperative Extension, Small Grain Production Guide 7, 1995.
Bissonnette Suzanne, 2002 – Powdery mildew of wheat. The Pest Management and Crop Development Bulletin.
Chen - Xiaoxi, Liu Wenhong, 2011 - Potent antagonistic activity of newly isolated biological control Bacillus subtilis and novel antibiotic against Erysiphe graminis f. sp. tritici, Journal of Medicinal Plants Research, Vol. 5(10), pp. 2011 - 2014, Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals, accesat la data 18.04.2022.
Chet L., 2003 – Development of powdery mildew and leaf rust epidemics in winter wheat cultivars: Plant soil Environ, 49 (10): 439 – 442.
Cotuna Otilia, Popescu G., 2005b - Researches concerning the sexual incidence of Blumeria graminis (DC) Speer in different biotrophic related with the climatic factors. 5th Intern. Conference, Univ.of Miskolc, Hungary, 14 - 20 aug. 2005 (Agriculture), 43 - 48.
Davis R. M., Davis U. C., Jackson L. F., 2002 – Small grains powdery mildew, UCIPM Pest Management Guidelines: Small Graines Disease UC ANR Publication 3466.
Deacon J. W., 2006 – Fungal biology, Blackwell Publishing Ltd, 280 - 307.
Eliade Eugeania, 1990 – Monografia erysiphaceelor din România, Bucureşti, 573, p. 166 – 179.
Everts K. L., Leath S., Finney P. L., 2001 - Impact of powdery mildew and leaf rust on milling and baking quality of soft red winter wheat. Plant Dis.,85: 423 – 429.
Friedrich S., 1995 – Calculation of conidial dispersal of Erysiphe graminis whithin naturally infected plant canopies using hourly meteorological input parameters. Zeitschrift für Pflanzen krankheiten und Pflanzenschutz, 1995, 102: 4, p. 337 - 347.
Friedrich S., 1995 – Modelling infection probability of powdery mildew in winter wheat by meteorological input variables. Zeitschrift für Pflanzenkranken heiten und Pflanzenschutz, 1995, 102: 4, 354 - 365.
Harwick N. V., Jenkins J. E. E., Collins B., Groves S. J., 1994 – Powdery mildew (Erysiphe graminis) on winter wheat: control whit fungicides and the effects on the yield, Crop Protection 1994, 13: 2, p. 93 - 98.
Hatman M., Bobeş I., Lazăr Al., Gheorghieş C., Glodeanu C., Severin V., Tuşa Corina, Popescu I., Vonica I., 1989 – Fitopatologie, Edit. Did. şi Ped. Bucureşti, p. 185 - 188.
Hulea Ana, Paulian F., Comeş I., Hatman M., Peiu M., Popov C., 1975 – Bolile şi dăunătorii cerealelor. Edit. Ceres, Bucureşti, p. 27 – 30.
Iacob Viorica, 2003 – Fitopatologie, Ed. Ion Ionescu de la Brad, Iaşi, p. 170.
Kocourek F., Vechet L., 1984 - Uber ein temperaturbhangiges Modell zur Vorhersage der Entwicklungsgeschwindikeit bei Erysiphe graminis f. sp. tritici. Anz. Schadlinskd. Pfl. Um.,57:15 - 18.
Lipps Patrick E., 1996 – Powdery mildew of wheat. The Ohio State University Extension. Plant Pathology.
Prescott J. M., Burnett P. A., Saari E. E., 1986 – Wheat Diseases and Pests, A Guide for Field identification, CMMYT. Mexico.
Popescu G., 1998 – Fitopatologie, Edit. Mirton Timişoara, 1998, 190, p. 3 – 4.
Popescu G., 2005 – Tratat de Patologia plantelor, vol. II, agricultură, Editura Eurobit, 350 p..
Shahin A. A., Ashmavy M. A., Esmail M. S., El - Moghazy, 2019 - Biocontrol of wheat powdery mildew disease under field conditions in Egypt, Plant Protection and Pathology Research, Zagazig J. Agric. Res., vol. 46, No (6B), 2255 - 2270.
Sandu Ville C., 1967 – Ciupercile Erysiphaceae din România. Ed. Acad. RSR, Bucureşti, 358 p.
Trevathan L. E., 2001 – Diseases of Crops, Departament of Entomology and Plant Pathology, Missisipii State University. EPP, 4214 – 6214.
Wiliams E., Littlefield L. J., 1995 – Major Foliar Fungal Diseases of Wheat in Oklahoma. Oklahoma Cooperative Extension Service. OSU Extension Facts, F - 7661.
Yang J. S., Ge Q. L., Wu W., Wu Y. S., 1992 – On the infection cycle of Blumeria graminis D.C. Speer in Northeastern China. Acta Phytopatologica Sinica, 1992, 22: 1. P. 35 - 40.
Zeller F. J., Petrova Nedialka, Spetsov Penko, Hsam S. L. K., 2002 - Identification of powdery mildew and leaf rust resistance genes, in common wheat (Triticum aestivum L. em. Thell.) cultivars grown in Bulgaria and Russia. Published in Issue, nr. 122, 32 - 35.

Articol scris de:  dr. ing. Otilia Cotuna, CSIII Laborator de Protecția plantelor SCDA Lovrin, șef lucrări USAMVB Timișoara

Foto: Otilia Cotuna

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

La Stațiunea de Cercetare-Dezvoltare Agricolă Lovrin (Laboratorul de Protecția Plantelor) am analizat probe provenite de la cais cultivat în sistem ecologic. Plantația a fost înființată de doi ani. În urma analizelor efectuate am constatat cu surprindere prezența unui fung specific declinului și anume Schizophyllum commune care produce boala numită „putregaiul alb” sau ”putrezirea Schizophyllum” (în engleză ”Schizophyllum rot”). Din cauza capacității fungului de a putrezi lemnul, unii autori numesc boala „cancerul și declinul pomilor”.

cais2

Într-o carte veche (1899) am găsit o explicație cu privire la termenul „cancer”, atât de controversat și neînțeles de mulți pomicultori. În cartea „The New York apple tree canker”, Paddock Wendel aduce în atenție termenul de „cancer” și dă următoarea explicație: „Termenul de cancer, aplicat bolilor plantelor, a fost folosit în Europa de mult timp (înainte de 1900) pentru a evidenția daunele sau rănile produse pomilor de speciile de Nectria. În această situație, termenul a ajuns să fie privit ca fiind specific fungului Nectria, deși și alți fungi produc daune similare copacilor. Potrivit lui Hartig, daune similare produce și frigul și atunci am putea spune „cancer de îngheț”. La modul general, se poate spune că orice vătămare a copacilor care se manifestă prin distrugerea scoarței și lăsarea lemnului la vedere, poate fi clasificată sub termenul general de cancer”. Iată o explicație simplă din 1899.

cais

Mulți caiși din plantația bolnavă au murit deja din cauza bolii. Este posibil ca pomii să fi venit infectați din pepinieră. Voi urmări evoluția bolii și în acest an. Situația este gravă deoarece patogenul este dificil de ținut sub control odată ce a pătruns în plantă, mai ales dacă se localizează în tulpina principală. Un pom tânăr, cu diametru mic al tulpinii va fi ucis cu ușurință de către acest patogen/saprofit. Vă recomand să analizați cu atenție materialul de plantat. Scoarța pomilor trebuie să nu aibă simptome de boală (crăpături, gome, corpuri fructifere fungice, carpofori ai fungilor macroscopici specifici declinului etc), rădăcina să fie sănătoasă, nu brunificată, iar în secțiune lemnul să nu prezinte brunificări. Este esențial să faceți asta ca să nu aveți probleme în viitor.

Schizophyllum commune (ciupercă de putrezire) este considerată un fung saprofit ce are capacitatea de a descompune lemnul mort, dar poate provoca daune și copacilor slăbiți la fel ca o ciupercă patogenă cu virulență slabă. Prin urmare, este considerată un parazit de rană sau de plagă care poate degrada lemnul pomilor (cambium/alburn rănit dar și duramenul expus). În general, ciuperca colonizează pomii stresați de căldură, arsuri solare, secetă, insecte sau răni majore, lemnul tăiat și căzut și părțile moarte ale copacilor vii. Putrezirea lemnului este de obicei o boală a copacilor bătrâni. În cazuri speciale (cum este cazul de față) ciuperca poate infecta și pomii foarte tineri. Când Schizophyllum commune infectează pomii foarte tineri, este semn că aceștia sunt debilitați din alte cauze. Patogenul este dificil de gestionat în livezile infectate.

Atenție! Schyzophyllum commune produce boli la oameni. Vin în ajutorul dumneavoastră cu câteva informații cu privire la acest fung, deoarece am observat că este prezent din ce în ce mai des în livezile tinere și nu numai.

Acești pomișori sunt sortiți pierii. Între timp au fost scoși

Acești pomișori sunt sortiți pierii. Între timp au fost scoși

 

Schizophyllum commune Fries - putregaiul alb sau „putrezirea Schizophyllum” a pomilor

 

Schizophyllum commune este o specie cosmopolită de basidiomicotine de putrezire a lemnului. Ciuperca este comună în multe zone din lume. În unele țări (Nigeria, Malaezia, Mexic), ciuperca este consumată fiind considerată comestibilă [Takemoto et al., 2010]. În climatul nostru, fungul nu este comestibil, datorită dimensiunii mici și a consistenței pieloase, dure a bazidiocarpilor care acumulează mult Fe și Zn [Milovac et al., 2017]. Bazidiocarpii sau carpoforii sunt acele structuri fungice macroscopice ce pot fi observate pe scoarța copacilor morți sau a celor vii.

Nakamura et al. [citat de Takemoto et al., 2010] în studii nepublicate, a găsit sporocarpii acestei ciuperci atât pe scoarța copacilor morți, cât și pe ramurile și trunchiurile copacilor vii încă. Acest fung pare să colonizeze lemnul mai repede decât alte ciuperci de putrezire a lemnului.

Basidiocarp deshidratat. La prima ploaie se va rehidrata și va produce spori continuu

Basidiocarp deshidratat. La prima ploaie se va rehidrata și va produce spori continuu

 

Cum recunoaștem Schizophyllum commune

 

Prezența corpurilor fructifere (în formă de evantai și culoare albă, cenușie) ale fungului pe suprafața pomilor este semn că scoarța și cambiul sunt moarte, iar ramurile sau tulpina sunt cel puțin parțial putrede. Deoarece degradarea cauzată de aceste ciuperci poate progresa rapid în tulpină, trebuie să presupunem că, atunci când ciupercile putregaiului sevei sunt vizibile, o parte considerabilă a tulpinii ar putea fi putrezită. Prin urmare, tulpinile sau ramurile care prezintă fructificații ale acestei ciuperci ar trebui considerate cu un risc crescut de mortalitate [Luley et Kane, 2009]. Pomii infectați au vigoarea scăzută, prezintă gome în țesuturile lemnoase, frunze mici putând apărea chiar fenomene de defoliere prematură [Puterill, 1922].

Carpoforii fungului Schizophyllum commune la cais în primăvara 2021

Carpoforii fungului Schizophyllum commune la cais în primăvara 2021

Există mulți cercetători care au observat de-a lungul timpului că, S. commune are capacitatea de a invada țesuturile vii ale plantelor lemnoase și de a le omorî treptat [Hemmi, 1942]. Încă din 1922, Putterill a realizat experimente de inoculare la migdal, cais și piersic și a raportat că fungul a manifestat patogenitate la cais și piersic. Tot el a raportat și prezența gomelor, cleiurilor în vasele și celulele lemnului bolnav. Partea putredă a lemnului se distinge clar de cea sănătoasă printr-o linie distinctă. Uneori, ciuperca poate popula țesuturile vii ale pomilor fără simptome vizibile [Nakazawa et Harada, 2002]. După Poole (1929), patogenul poate pătrunde ușor la merii infectați de bacteria Erwinia amylovora. De asemenea poate însoți cancerele produse de Nectria sp., Botryosphaeria sp., Phomopsis sp., Valsa sp. etc.

 

Patogenia și epidemiogia fungului Schizophyllum commune

 

Fungul S. commune a fost raportat ca fiind prezent în lemnul mort la aproximativ 150 de genuri de plante. Ocazional a fost raportat și ca patogen la speciile lemnoase dar și la oameni [Schmidt et Liese, 1980]. Takemoto et al. (2010) arată că fungul este recunoscut ca agent patogen ce produce putrezirea lemnului la pomii vii. În cartea sa despre bolile pomilor fructiferi, Togashi (1950), a descris S. commune ca fiind un agent patogen care pătrunde prin răni și duce la putrezirea lemnului la multe specii pomicole (semințoase, sâmburoase), putând produce pagube considerabile. Autorul arată că fungul este adesea semnalat la măr, piersic, cireș, cais.

Carpofori prezenți pe tulpină, scoarță și lemn brunificate, cleiuri prezente în țesutul lemnos

Carpofori prezenți pe tulpină scoarță și lemn brunificate cleiuri prezente în țesutul lemnos

De obicei, Schizophyllum commune nu poate pătrunde într-o plantă sănătoasă. Un pom viu poate fi infectat doar dacă prezintă leziuni prin care ciuperca poate pătrunde. Cazuri excepționale au fost raportate la măr unde ciuperca a pătruns totuși prin țesuturile tinere de la vârful tulpinii. De regulă, fungul pătrunde prin răni care lasă la vedere alburnul, cum ar fi: leziuni ce rămân în urma tăierilor, înghețurilor, arsurilor solare, grindinei, atacului agenților fitopatogeni și a dăunătorilor etc [Putterill, 1922; Snieškienė et Juronis, 2001; Ito, 1955; Nakazawa, N. & Harada, 2002].

Unii cercetători consideră S. commune parazit de plagă sau chiar saprofit. Alții arată că fungul este de fapt un agent patogen al plantelor producând boala „putrezirea Schizophyllum” sau ”Schizophyllum rot” (în engleză), la pomii vii. La sâmburoase poate produce pagube considerabile mai ales la pomii debili sau neîngrijiți [Togashi, 1950; Kishi, 1998]. De-a lungul timpului, ciuperca a fost recunoscută de către mulți cercetători ca fiind agent patogen de putrezire al pomilor fructiferi [Putterill, 1922; Bergdahl et French, 1985; Lacok, 1986; Oprea et al., 1994; Snieskiene et Juronis, 2001; Shimizu et al., 2008; Lahbib et al., 2016].

În zonele cu climat temperat fungul are condiții foarte bune de dezvoltare [Vulinovic et al., 2018]. Numeroase studii arată că, factorii climatici au un rol important în creșterea incidenței atacului acestui fung, Astfel, temperaturile scăzute din timpul iernii, seceta din vară și umiditatea foarte ridicată susțin patogenia [Sinclair et al., 1987; Oprea et al., 1994; Snieškienė et Juronis, 2001]. Pe lângă acești factori, vigoarea scăzută a pomilor facilitează infectarea [Essig, 1922].

Odată infecția realizată, fungul Schizophyllum commune descompune scoarța și cambiul copacilor după care trece în alburn iar moartea pomilor este iminentă în astfel de situații. De cele mai multe ori se stabilește ușor pe scoarța și cambiul care sunt deja putrede din alte cauze. Din țesuturile moarte, cu ușurință va trece în scoarța sănătoasă și cambiul adiacent. Boala mai poartă numele de putrezirea sevei deoarece descompunerea are loc în alburn după care progresează spre centrul tulpinii. Totuși, această denumire este oarecum greșită, deoarece marea majoritate a ciupercilor de putrezire a sevei sunt capabile sau au capacitatea de a descompune și duramenul unui pom, odată ce alburnul a putrezit [Luley et Kane, 2009]. Se poate spune că, fungul acționează ca un organism care produce „cancer”, fiind capabil să descompună rapid lemnul. Sănătatea pomului pare a fi un factor important în limitarea răspândirii putregaiului sevei la țesuturile adiacente.

Se observă forma de evantai a carpoforilor ciupercii

Se observă forma de evantai a carpoforilor ciupercii

Corpurile fructifere (carpoforii sau bazidiocarpii) au dimensiuni cuprinse între 1 - 6 cm lățime, formă de evantai când se formează pe părțile laterale ale pomului, neregulată uneori funcție de locul unde se formează. Carpoforii sunt acoperiți cu perișori și pot avea culoare albă, cenușie și chiar cafenie când îmbătrânesc, nu au tulpină, au consistență tare, pieloasă. Lamelele de pe suprafața inferioară (asemănătoare unor branhii) produc bazidiospori. Sporii au dimensiuni cuprinse între 3-4 x 1-1,5 μm, sunt cilindrici până la eliptici, netezi. Corpurile fructifere sunt necomestibile datorită dimensiunilor mici și consistenței pieloase, dură. Basidiosporii sunt dispersați abundent în aer și joacă un rol important în realizarea infecțiilor [James et Vilgalys, 2001].

Pe timp de secetă, corpurile fructifere se usucă, dar au capacitatea de a se rehidrata în condiții de umiditate. Astfel, de deschid și se închid de mai multe ori pe parcursul unui sezon de creștere. Aceasta este o adaptare excelentă pentru un climat arid, cu ploi sporadice. Spre deosebire de alte specii de ciuperci, miceliul trebuie să producă doar un set de corpi fructiferi pe an, care apoi se pot usca aproape complet și se pot rehidrata și pot continua să funcționeze. Este o strategie excelentă pentru reproducerea fungică. Chiar și în timpul iernii putem găsi corpuri fructifere sporulante ale acestei ciuperci.

Partea inferioară a bazidiocarpului

Partea inferioară a bazidiocarpului

Deoarece este adaptat la condițiile aride și este rezistent la poluare, fungul S. commune s-a dovedit a fi cel mai agresiv invadator al speciilor lemnoase forestiere, pomicole, ornamentale etc. Pe lângă asta amenință persoanele imunocompromise, producând alergii, sinuzite, boli de plămâni [Vulinovic et al. 2018].

 

Management și control

 

Rezistența la patogen este variabilă între soiurile de cais și măr [Oprea et al., 1994; Latham, 1970].

Fungul este încadrat în categoria de risc scăzut (zona galbenă) [31; 32]. Cu toate acestea, ciuperca poate afecta sănătatea și stabilitatea structurală a pomilor. Pomii infectați trebuie supuși monitorizării numai dacă ciuperca este asociată cu trunchiul principal sau cu ramurile de schelet ale copacilor.

Alternativ, îndepărtarea părților infectate ar putea fi luată în considerare dacă ciuperca este observată pe ramuri de dimensiuni mici. Fungicidele pot fi aplicate copacilor infectați cu această ciupercă ca măsură provizorie pentru a întârzia creșterea fungică. În realitate, deoarece ciuperca este în interiorul lemnului, nu există tratamente fungicide eficiente.

În acest sens, pomii trebuie examinați cu atenție, mai ales în zonele rănite. Vigoarea pomilor trebuie menținută prin regimuri adecvate de îngrijire, în așa fel încât șansa infecției fungice să fie redusă substanțial [Toghasi, 1950].

Rănile cauzate de tăieri, precum și cele cauzate de temperaturile scăzute, dar și arsurile solare ar putea servi cu ușurință drept porți de intrare pentru Schyzophylum commune. De cele mai multe ori, fungul se atașează de scoarțe rănite, cancere de pe ramuri și tulpini. Odată stabilit pe copacii infectați, putrezirea localizată poate continua și deschide calea pentru infecții suplimentare cu alte ciuperci oportuniste de dezintegrare a lemnului. Majoritatea pomilor infectați sunt de obicei deja slăbiți și prezintă simptome nespecifice de anomalie a coroanei, cum ar fi defolierea, regresia, producții mici. Se recomandă îngrijirea cu atenție a pomilor care suferă daune climatice pentru a preveni instalarea acestui fung dar și a altor basidiomicotine de putrezire a lemnului [Takemoto et al., 2010].

Tulpină putrezită

Tulpină putrezită

Cel mai bun mod de a preveni „putrezirea Schizophyllum” este să menținem starea de sănătate a pomilor.

În acest sens, trebuie respectate câteva reguli:

  • Minimizarea rănilor care rămân în urma tăierilor, deoarece patogenul pătrunde prin răni.

  • Efectuați tăierile în perioada de repaus vegetativ și pe vreme uscată.

  • Identificați pomii infectați cu Schyzophillum commune și verificați starea lemnului (dacă mai este lemn sănătos sau nu).

  • Păstrați vigoarea pomilor printr-o fertilizare adecvată și echilibrată. Aplicați îngrășăminte la mijlocul toamnei sau primăvara devreme.

  • Irigarea echilibrată mai ales în timpul perioadelor secetoase, la fiecare 10 - 14 zile (dacă este vreme uscată și caldă pe o perioadă prelungită).

  • Pomii proaspăt plantați ar trebui protejați la intrarea în iarnă prin înfășurarea trunchiurilor cu hârtie Sisalkraft (specială pentru împachetarea pomilor înainte de iernat).

  • Evitați rănirea inutilă a scoarței în timpul lucrărilor din livadă. Rănile apărute trebuie tratate, badijonate cu substanțe ce conțin substanțe fungicide, deși de multe ori nu au nici un efect și sunt doar cosmetice. Mai indicată este netezirea și dezinfectarea rănilor cu alcool 70%.

  • Îndepărtați ramurile și pomii grav deteriorați [Jha, 2020].

S. commune este cel mai cunoscut agent de infecție umană dintre Basidiomycotine. Pe lângă faptul că este considerat un agent patogen al plantelor din ce în ce mai agresiv care provoacă putregaiul alb, s-a raportat recent că această ciupercă poate provoca boli grave: micoza bronhopulmonară alergică [Kamei et al., 1994], boală pulmonară cronică [Ciferri et al., 1956], meningită [Chavez – Batista et al., 1955], sinuzită [Kern et Uecker, 1986; Catalano et al., 1990; Rosenthal, 1992], alergii etc. Cu marea sa adaptare la climatul arid și rezistența la poluare, Schizophyllum commune s-a dovedit a fi cel mai agresiv și de succes invadator fungic universal al speciilor lemnoase, amenințând oamenii imunodeprimați și chiar pe cei sănătoși [Matavulj et al., 2013].

 
Bibliografie
[1] Barnard E. L., Smith J., Understanding Decay in Florida Trees - An expplanation and pictorial guide to some of the more common decay fungi observed on Florida Trees, 8 p., https://www.floridaisa.org/.../understandingDecay...
[2] Bergdahl, D. R. & French, D. W. (1985) Association of wood decay fungi with decline and mortality of apple trees in Minnesota. Plant Dis., 69, 887–890
[3] Castillo, G. & Demoulin, V. (1997) NaCl salinity and temperature effects on growth of three wood-rotting basidiomycetes from a Papua New Guinea coastal forest. Mycol. Res., 101, 341–344
[4] Ciferri, R., Chavez Batista, A., Campos, S. (1956): Isolation of Schizophyllum commune from sputum. Atti Inst. Bot. Lab. Crittogam. Univ. Pavia 14:118 – 120.
[5] Chavez - Batista, A., Maia, J.A., Singer, R. (1955): Basidioneuromycosis on man. Anais Soc Biol Pernambuco 13:52 – 60.
[6] Catalano, P., Lawson, W., Bottone, E., Lebenger, J. (1990): Basidiomycetous (mushroom) infection of the maxillary sinus. Otolaryngol. Head Neck Surg. 102: 183– 185.
[7] Essig, F. M. (1922) The morphology, development, and economic aspects of Schizophyllum commune Fries. University of California Publications in Botany, 7, 447–498, plates 51–61.
[8] Hemmi, T. (1942) On some diseases of fruit trees in Manju region and North China (II). J. Plant Prot., 29, 66–71, plates 1–7 [In Japanese].
[9] Ito, K. (1955) Diseases of chestnut and their characteristics. In Chestnut in Japan, eds. Kajiura, M. & Ono, Y., Japanese Chestnut Council, Tokyo, Japan, 45–58 [In Japanese].
[10] James, T. Y. & Vilgalys, R. (2001) Abundance and diversity of Schizophyllum commune spore clouds in the Caribbean detected by selective sampling. Mol. Ecol., 10, 471–479.
[11] Jha S. K., 2020, Identification and management of heart-rot fungi,” Banko Janakari, vol. 30, no. 2, pp. 71–77, 2020.
[12] Kern, M. E. and Uecker, F. A. (1986): Maxillary sinus infection caused by the homoba-sidiomycetous fungus Schizophyllum commune. J Clin Microbiol, 23: 1001–1005.
[13] Kishi, K. (1998) Plant diseases in Japan. Zenkoku-NosonKyoiku Kyokai Publishing Co. Ltd., Tokyo, Japan [In Japanese].
[14] Lahbib A, Chattaoui M, Aydi N, Zaghouani H, Beldi O, Daami-Remadi M, Nasraoui B, 2016. First report of Schizophyllum commune associated with apple wood rot in Tunisia. New Disease Reports 34, 26. http://dx.doi.org/10.5197/j.2044-0588.2016.034.026.
[15] Lačok, P. (1986) Fungi and apricot cultures in Slovakia (Czechoslovakia) at present. Acta Horticulturae, 192, 205 – 212.
[16] Latham, A. J. (1970) Development of apple fruit rot and basidiocarp formation by Schizophyllum commune. Phytopathology, 60, 596–598.
[17] Matavulj Milan N., Svjetlana B. Lolić , Slobodanka B. Vujčić, Snežan a Milovac, Milana S. Novaković, Maja A. Karaman, 2013 - Schizophyllum commune: The main cause of dying trees of the Banja Luka arbored walks and parks, Jour. Nat. Sci., Matica Srpska Novi Sad, № 124, 367—377, 2013, DOI: 10.2298/ZMSPN1324367M.
[18] Milovac S., Škrbić B., Lolić S., Karaman M., Matavulj M., 2017, Distribucija teških metala u biotskom i abiotskom matriksu pored visokofrekventne saobraćajnice u Banjoj Luci. (Distribution of heavy metals in biotic and abiotic matrix along high-frequency road in the Banja Luka city. Proceedings of the Conference on 20 Anyversary of the Faculty of Sciences of the Banja Luka University (Republic of Srpska, Bosnia). 1: 29 – 40.
[19] Nakazawa, N. & Harada, Y. (2002) Growth inhibition of Valsa ceratosperma by fungal isolates from apple trees. Ann. Rept. Plant Prot. North Japan, 53, 109 – 111 [In Japanese].
[20] Oprea, M., Şesan, T. & Bălan, V. (1994) Schizophyllum commune – canker and dieback disease of apricot trees in orchards of southeastern Romania. Rev. Roum. Biol. – Biol. Végét., 39, 35 – 40.
[21] Poole, R. F. (1929) Sweet potatoes infected by Schizophyllum commune. J. Elisha Mitchell Sci. Soc., 45, 137–139, plates 7–9
[22] Putterill, V. A. (1922) The biology of Schizophyllum commune Fries with special reference to its parasitism. Union of South Africa, Dept. Agr., Sci. Bull., 25, 3–35
[23] Rosenthal, J., Katz, R., DuBois, D. B., Morrissey, A., Machica O., A., (1992): Chronic maxillary sinusitis associated with the mushroom Schizophyllum commune in a patient with AIDS. Clin. Infect. Dis. 14: 46 – 48.
[24] Sinclair, W. A., Lyon, H. H. & Johnson, W. T. (1987) Diseases of trees and shrubs. Cornell Univ. Pr., New York, USA
[25] Shimizu, J., Hayashi, Y. & Fukuda, K. (2008) Wood-rot disease on cherry trees along Koganei Cherry Street, a national cultural property. Landscape Res. J., 71, 865–868 [In Japanese with English summary]
[26] Schmidt O., Liese W., 1980. Variability of wood degrading enzymes of Schizophyllum commune. Holzforschung 34: 6772.
[27] Snieškienė, V. & Juronis, V. (2001) Distribution of the fungus Schizophyllum commune Fr. in plantings of trees in the Kaunas city. Biologija, 3, 45–47
[28] Takemoto, S., Nakamura, H., Imamura, Y., and Shimane, T. (2010). Schizophyllum commune as a Ubiquitous Plant Parasite. Japan Agricultural Research Quarterly, 44(4),357-364.
[29] Togashi, K. (1950) Fruit tree pathology. Asakura, Tokyo, Japan [In Japanese].
[30] Vulinović Jelena N, Svjetlana B. Lolić, Slobodanka B. Vujčić, Milan N. Matavulj, 2018 - Schizophyllum commune – the dominant cause of trees decay in alleys and parks in the City of Novi Sad (Serbia), Biologia Serbica, 2018, 40(2): 26-33, DOI 10.5281/zenodo.2452495.
[31] ***Note on Common Wood Decay Fungi on Urban Trees of Hong Kong, Greening, Landscape and Tree Management Section, Development Bureau, The Government of the Hong Kong Special Administrative Region, 2015, 41 pag.
[32] ***Guidelines for Tree Risk Assessment and Management Arrangement on an Area Basis and on a Tree Basis’ issued by the Greening, Landscape and Tree Management Section, Development Bureau, available at www.trees.gov.hk.

Articol scris de: DR. ING. OTILIA COTUNA, CSIII Laborator de protecția plantelor SCDA LOVRIN, Șef lucrări USAMVB Timișoara

Foto: Otilia Cotuna

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Horticultura

Fungul Macrophomina phaseolina și-a făcut simțită prezența în acest an la floarea-soarelui cultivată în județul Timiș. Am primit la laborator plante de floarea-soarelui infectate. O solă întreagă a fost distrusă de patogen, plantele fiind compromise în totalitate (căzute la sol).

cotuna1

Tulpinile și rădăcinile de floarea-soarelui analizate erau pline de microscleroții ciupercii Macrophomina phaseolina. Am găsit și picnidii, deși ele se formează mai rar. Măduva lipsea în treimea inferioară a multor tulpini, iar în altele era plină de scleroți, comprimată, cu aspect de „farfurii etajate” în secțiune. Tulpinile prezentau o decolorare cenușie - argintie la bază, tipică ciupercii. Epiderma se desfăcea cu ușurință de pe tulpini. Pe suprafața epidermei și sub ea, numeroși scleroți erau formați. Rădăcinile erau pline de scleroți și foarte slab dezvoltate, aspect ce indică o înrădăcinare defectuoasă a plantelor. Numeroase pete de culoare rozacee erau prezente pe rădăcina principală, dar și pe cele secundare. Pe secțiunile de rădăcină puse pe mediul de cultură în incubator au crescut micelii de Fusarium sp., semn că rădăcinile au fost colonizate probabil înainte de realizarea infecției de către fungul M. phaseolina.

Iată cum, pe fondul modificărilor climatice la care asistăm neputincioși, al creșterii temperaturilor peste mediile multianuale, Macrophomina phaseolina și-ar putea face simțită prezența în culturile de floarea-soarelui din Banat în fiecare an. Asta nu ar fi bine deloc, deoarece patogenul este greu de ținut sub control.

La condițiile de climă putem adăuga condițiile de sol, înrădăcinarea defectuoasă a plantelor, carențele de bor, știut fiind că patogenul se instalează cu ușurință pe plantele afectate de fiziopatii. Este bine ca fermierii să fie atenți la planta premergătoare (să nu fie gazdă, deși este foarte greu, având în vedere numărul mare de gazde ale patogenului) și la semințele pe care le cumpără (să fie libere de microscleroți).

În cele ce urmează, câteva informații despre acest fung extrem de periculos al florii-soarelui.

Tulpină golită de măduvă în treimea inferioară. Se observă microscleroții numeroși pe pereții tulpinii

Tulpină golită de măduvă în treimea inferioară. Se observă microscleroții numeroși pe pereții tulpinii

Macrophomina phaseolina (Tassi) Goidanich cu forma microscleroțială Rhizoctonia bataticola (Taubenhaus) E. J. Butler

Macrophomina phaseolina este un fung polifag, putând infecta peste 500 de plante cultivate și sălbatice. Numărul mare de plante gazdă arată că este un patogen nespecific (Indera et al., 1986). La floarea-soarelui, M. phaseolina este un patogen foarte important, capabil să producă pagube mari în producție și chiar să compromită întreaga cultură uneori. Patogenul este deosebit de periculos în zonele aride ale lumii, unde produce pagube în mod constant (Hoes, 1985). Pierderile de producție datorate putrezirii cărbunoase pot ajunge la 60% (Steven et al., 1987). În anii cu condiții favorabile patogeniei s-au raportat pierderi totale ale culturilor de floarea-soarelui (Jimenes et al., 1983; Damtea et Ojiewo, 2016).

Recunoașterea bolii în câmp, simptome

La floarea-soarelui, fungul M. phaseolina infectează plantele în primele stadii de dezvoltare. Cu toate acestea, simptomele nu apar decât spre sfârșitul perioadei de înflorire (Meyer et al., 1974; Docea et Severin, 1990). Faptul că primele simptome apar la maturitatea plantelor indică o infecție latentă. De regulă, plantele care aparent prezintă o bună dezvoltare în primele stadii vor prezenta simptome severe la maturitate. Din cauza infecției, plantele se maturează timpuriu, vor avea calatidii mai mici, uneori deformate și un număr redus de achene. În zona centrală a calatidiului multe flori sunt avortate (EPPO, 2000).

Spre sfârșitul stadiului de înflorire al florii-soarelui, apar și primele simptome produse de patogen pe tulpini și rădăcini. De regulă, tulpinile sunt afectate în zona bazală sau în treimea inferioară (Docea et Severin, 1990; Popescu, 2005). La suprafața tulpinilor atacate apare o decolorare cenușie cu reflexe argintii uneori, tipică acestui agent patogen. În țesuturile atacate ciuperca va forma numeroși microscleroți de culoare neagră, ce dau aspect cenușiu - negricios, asemănat de unii autori cu o pulbere fină de cărbune. Măduva din zona inferioară a tulpinilor capătă aspect negricios din cauza microscleroților (Yang et Owen, 1982; Kolte, 1985; Khan, 2007). Uneori, în zona afectată tulpina este golită de măduvă, alteori măduva nu este distrusă în totalitate, dar este desfăcută în discuri cu aspect de „farfurii etajate” (Docea et Severin, 1990; Popescu, 2005). Epiderma bolnavă se desprinde cu ușurință de tulpină. La suprafața epidermei bolnave, dar și sub ea se formează microscleroți negri din abundență, ce conferă aspect negru-cenușiu, cărbunos (Sinclair, 1982; Kolte, 1985). După Csüllög et al. (2020), tulpinile atacate au aspect carbonizat, iar epiderma se desprinde. Pe lângă microscleroți, ciuperca poate forma picnidii pe tulpini, dar asta se întâmplă mai rar în condiții naturale. Aceeași autori arată că, în prima etapă a infecției, plantele de floarea-soarelui prezintă simptome de ofilire. Apare îngălbenirea și senescența frunzelor care rămân atașate de tulpini (Smith et Carvil, 1997).

Rădăcină bolnavă, putredă

Rădăcină bolnavă putredă

Sistem radicular distrus, slab dezvoltat

Sistem radicular distrus slab dezvoltat

În același mod sunt infectate și rădăcinile. Fungul pătrunde în rădăcinile secundare și terțiare după care ajunge în rădăcina primară. Infectând sistemul fibrovascular al rădăcinilor și internodurilor bazale, fungul blochează transportul nutrienților și al apei. Din cauza sistemului radicular distrus, plantele bolnave pot fi smulse cu ușurință din sol și pier în cele din urmă. Pe rădăcinile bolnave se formează microscleroți de culoare neagră (Ahmad et Burney, 1990; Docea et Severin, 1990). Ofilirea plantelor poate începe în stadiul de înflorire și continuă până la maturitatea plantelor. În astfel de situații pierderile de producție pot fi foarte mari (Prioletta et Bazzalo, 1998).

Patogenie și epidemiologie

Fungul poate rezista sub formă de microscleroți în sol, pe resturile vegetale, dar și în masa de semințe (EPPO, 2000; Csüllög et al., 2020; Popescu, 2005; Docea et Severin, 1990). Există studii care arată corelații pozitive între nivelul inoculului din masa de semințe și severitatea infecției (Ahmed et al., 1991; Khan, 2007). Microscleroții pot supraviețui în sol de la 10 până la 15 ani (Gupta et al., 2012; Csüllög et al., 2020).

Ciuperca atacă plantele mai ales în perioadele secetoase și cu temperaturi ridicate. Temperatura, umiditatea atmosferică și cea disponibilă sunt foarte importante în realizarea infecțiilor cu Macrophomina phaseolina. Microscleroții germinează la temperaturi cuprinse între 30 - 350C (Marquez et al., 2021). Atacul fungului este influențat în principal de temperatură, mai ales de temperaturile solului de peste 280C și de precipitații (EPPO, 2000).

În primele stadii de dezvoltare a plantelor, fungul are capacitatea de a ocupa gazda în 24 - 48 ore în condiții de temperatură scăzută și umiditate ridicată. De obicei, în această fenofază simptomele nu sunt vizibile, iar ciuperca evoluează lent în plantele atacate până la formarea achenelor. În perioada de formare a semințelor, când umiditatea este scăzută și temperatura ridicată, simptomele tipice bolii devin vizibile (Ahmed, 1996).

După Popescu (2005), fungul infectează în general plantele cu afecțiuni fiziopatice, la care creșterea rădăcinii principale este oprită, iar rădăcinile secundare încep să îmbătrânească. La astfel de plante, sistemul radicular va fi ocupat de Fusarium sp., dar și de alte ciuperci care pregătesc astfel țesuturile radiculare pentru infecția cu Macrophomina phaseolina. Leziunile mecanice, densitatea ridicată, atacul insectelor sunt factori care favorizează instalarea patogenului (Shiekh et Ghaffar, 1984; Ahmed et al., 1991).

Măduvă cu microscleroți

Măduvă cu microscleroți

Aspectul cenușiu - negricios dat de numeroșii scleroți din măduvă

Aspectul cenușiu negricios dat de numeroșii scleroți din măduvă

Putem combate acest patogen?

Patogenul este foarte greu de ținut sub control, în principal datorită capacității extraordinare de supraviețuire a microscleroților în sol. Din acest motiv, controlul chimic al bolii este extrem de dificil și neeconomic. Prin urmare, măsurile de prevenție constituie abordarea corectă pentru combaterea acestui agent patogen (Hafeez și Ahmad, 1997). Se recomandă: utilizarea hibrizilor rezistenți, irigarea culturilor în condiții de secetă și temperaturi ridicate, distrugerea resturilor vegetale infectate, înființarea culturilor în terenuri cu textură corespunzătoare, rotația culturilor. Despre rotația culturilor se poate spune că nu dă rezultatele dorite întotdeauna, din cauza polifagiei ciupercii (infectează peste 300 de plante cultivate și buruieni) - Francl et al., 1988; EPPO, 2000; Popescu, 2005. Docea et Severin (1990) recomandă utilizarea la semănat de sămânță liberă de microscleroți, lucrări ale solului de calitate superioară, igiena culturală, rotația culturilor.

Controlul chimic al fungului Macrophomina phaseolina este extrem de dificil, deoarece nu există fungicide care să controleze patogenul la nivelul rădăcinii. În prezent numeroase studii se fac pe această temă (Chamorro et al., 2015a; Lokesh et al., 2020; Marquez et al., 2021). Într-un studiu efectuat în laborator, Csüllög et Tarcali (2020) arată că nu există fungicide eficiente împotriva acestui fung. Ei au testat câteva fungicide: azoxystrobin, ciproconazol, procloraz și piraclostrobin. Dintre ele, doar proclorazul a oprit creșterea hifelor și a microscleroților. Concluzia studiului este că doar rezistența genetică ar putea da rezultate în combatere.

În solurile infectate se pot face fumigări cu substanțe aprobate. Această metodă este destul de costisitoare și poluantă, fiind utilizată pe scară redusă (Lokesh et al., 2020). O metodă non - poluantă ce poate fi utilizată este solarizarea terenului infectat. Greu de aplicat și această metodă pe suprafețe mari. Pe lângă asta, terenul nu poate fi cultivat pe perioada solarizării.

Interes există și în combaterea biologică prin utilizarea antagoniștilor (fungi și bacterii), dar și a micorizelor. În acest sens se fac multe testări în laborator cu privire la eficacitatea lor în combatere.

Epiderma de culoare cenușie - argintie în zona bazală plină de microscleroți

Epiderma de culoare cenușie argintie în zona bazală plină de microscleroți

Bibliografie

Ahmad I., Burney K., 1990 - Macrophomina phaseolina infection and charcoal rot development in sunflower and field conditions. 3rd International Conference Plant Protection in tropics. March 20 - 23, Grantings, Islands Paeau, Malaysia.
Ahmad I., Burney K., Asad S., 1991 - Current status of sunflower diseases in Pakistan. National Symposium on Status of Plant Pathology in Pakistan. December 3 - 5, 1991, Karachi, P. 53.
Ahmad Y., 1996 - Biology and control of corn stalk rot. Ph.D. Thesis, Department of Biological Science, Quaid-i-Azam University, Islamabad, Pakistan.
Chamorro, M., Domínguez, P., Medina, J. J., Miranda, L., Soria, C., Romero, F., et al., 2015a - Assessment of chemical and biosolarization treatments for the control of Macrophomina phaseolina in strawberries. Sci. Hortic. (Amsterdam) 192, 361 – 368. doi: 10.1016/j.scienta.2015.03.029
Csüllög K., Tarcali G., 2020 - Examination of different fungicides against Macrophomina phaseolina in laboratory conditions, Acta Agraria Debreceniensis 2020 - 2, 65 - 69, DOI: 10.34101/ACTAAGRAR/2/3768.
Csüllög K., Racz E. D., Tarcali G., 2020 - The Charcoal rot disease (Macrophomina phaseolina (Tassi) Goid.) in Hungary, Characterization of Macrophomina phaseolina fungus, National Seminar on Recent Advances in Fungal Diversity, Plant - Microbes Interaction and Disease Management At: Banaras Hindu University, Varanasi, India. https://www.researchgate.net/publication/340686511_The_Charcoal_rot_disease_Macrophomina_phaseolina_Tassi_Goid_in_Hungary_Characterization_of_Macrophomina_phaseolina_fungus?fbclid=IwAR1uq8IrubcE5fFJ1RHUnqP7gxSo1jrV9snIuk8o3ed33Mzf6PQDnfMnxzQ
Damtea T., Ojiewo C. O., 2016 - Current status of wilt/root rot diseases in major chickpea growing areas of Ethiopia. Archives of Phytopathology and Plant Protection, 49: 222 – 238.
Docea E., Severin V., 1990 - Ghie pentru recunoașterea și combaterea bolilor plantelor agricole, Editura Ceres, București, p. 137, 320 p.
Francl L. J., Wyllie T. D., and Rosenbrock S. M., 1988 - Influence of crop rotation on population density of Macrophomina phaseolina in soil infested with Heterodera glycines. Plant Dis. 72, 760 – 764.
Gupta G. K., Sharma S. K., and Ramteke R., 2012 - Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). J. Phytopathol. 160, 167–180. doi: 10.1111/j.1439-0434.2012.01884.x
Hafeez A., Ahmad S., 1997 - Screening of sunflower germplasm for resistance to charcoal rot in Pakistan. Pak. J. of Phytopathology 9:74 - 76.
Hoes J. A., 1985 - Macrophomina phaseolina causal agent of charcoal rot of sunflower and other crops. Agriculture Research Station, Modren Manitoba, Canada.
Jimenez D. R. M., Blance L. M. A., Sackston W. E., 1983 - Incidence and distribution of charcoal rot of sunflower caused by Macrophomina phaseolina in Spain. Plant Disease 67: 1033 - 1036.
Indera K., Singh T., Machado C.C., Sinclair J.B., 1986 - Histopathology of soybean seed infection by Macrophomina phaseolina. Phytopathology 76: 532 - 535.
Khan S. N., 2007 - Macrophomina phaseolina as causal agent for charcoal rot of sunflower, Mycopath (2007) 5(2): 111 - 118.
Kolte, S. J., 1985 - Diseases of annual edible oilseed crops. Vol. II. Boca Raton, Florida: CRC Press, p. 33 – 44.
Lokesh R., Rakholiya K. B., and Thesiya M. R., 2020 - Evaluation of different fungicides against Macrophomina phaseolina (Tassi) goid. causing dry root rot of chickpea (Cicer arietinum L.) in vitro. Artic. Int. J. Curr. Microbiol. Appl. Sci. 9, 1 – 11. doi: 10.20546/ijcmas.2020.907
Marquez N., Giachero M. L., Declerck S. and Ducasse D. A., 2021 - Macrophomina phaseolina: General Characteristics of Pathogenicity and Methods of Control. Front. Plant Sci. 12:634397. doi: 10.3389/fpls.2021.634397.
Popescu G., 2005 - Tratat de patologia plantelor, vol II, Agricultură, Editura Eurobit, p. 143, 341 p.
Prioletta S., Bazallo M. E., 1998 - Sunflower basal stalk rot (Sclerotium bataticola): Its relationship with some yield component reduction. Hellia 21: 33 - 44.
Sinclair J. B., 1982 - Compendium of Soybean disease. 2nd Ed. by American Phytopathology Society, St. Paul, Minnesota, USA.
Shiekh A. H., Ghaffar A., 1984 - Reduction in variety of sclerotia of Macrophomina phaseolina with polyethylene mulching of soil. Soil Biology and Biochemistry 16: 77 - 79.
Smith G. S., and Carvil O. N., 1997 - Field screening of commercial and experimental soybean cultivars for their reaction to Macrophomina phaseolina. Plant Dis. 81, 363 – 368.
Steven M., Rana M. A., Mirza M. S., Khan M. A., 1987 - The survey of sunflower crop in Pakistan, oilseed programme, NARC, Islamabad.
Yang S. M., Owen D. F., 1982 - Symptomology and detection of Macrophomina phaseolina in sunflower plants parasitized by Cylendrocopturus adspersus larvae. Phytopathology 72: 819 - 821.
***EPPO Standard, European and Mediterranean Plant Protection Organization PP 2/21(1), 2000 - Guidelines on good plant protection practice - Sunflower, 9 p.
Fusarium crescut pe rădăcini bolnave
Fusarium crescut pe rădăcini bolnave

Foto: Otilia Cotuna

Abonamente Revista Fermierului - ediția print, aici: https://revistafermierului.ro/magazin/acasa/21-abonament-revista-fermierului-12-luni.html

Publicat în Protecția plantelor

Făinarea viței-de-vie produsă de agentul patogen Uncinula necator a fost observată prima dată în țara noastră în anul 1851, iar de atunci s-a extins continuu ajungând astăzi să fie prezentă în orice plantație de viță-de-vie din orice colț al țării noastre.

Ciuperca ierneaza sub formă de miceliu de rezistență în scoarță și mai ales în mugurii lăstarilor infectați, dar și sub formă de peritecii.

Primăvara, pe miceliul ectoparazit se formează conidii care răspândesc ciuperca pe întreaga perioadă de vegetație. Conidiile preferă o temperatură de 24-26 de grade Celsius, dar fereastra de germinare este de la 3-4 grade până la 34 de grade. După germinare, ciuperca se fixează pe organele verzi ale plantei cu ajutorul haustorilor și le acoperă în scurt timp cu un miceliu albicios cu aspect purulent.

Făinarea atacă fără ezitare toate organele verzi ale plantei, iar țesuturile acoperite de miceliu se brunifică și se necrozează sau chiar, mai grav, în cazul strugurilor, determină crăparea boabelor și scurgerea conținutului, creând astfel și condiții ideale pentru ca alte boli să se instaleze (mana, putregaiul cenușiu).

Așadar, este clar că această boală este foarte păgubitoare și afectează grav cantitatea, dar mai ales calitatea strugurilor.

Vinul obținut din struguri atacați de făinare este de o calitate slabă și nu mai este pretabil pentru învechire.

Făinarea este favorizată de temperaturi situate în jurul valorii de 20⁰C și de umiditatea relativă din aer în intervalul 50-80%.

În cazul castraveților, aceste condiții se întâlnesc adesea în solarii unde temperatura și umiditatea sunt ridicate în cea mai mare parte a timpului, de aceea trebuie gândit atât un plan eficient de combatere și o planificare foarte bună a tratamentelor, cât și alternarea sau combinarea substanțelor active pentru acțiunea multisite.

Karathane™ Gold 350 EC este un fungicid care țintește făinarea viței-de-vie și a castraveților datorită conținutului de meptildinocap 350g/l. Meptildinocap este o substanță activă cu un mod de acțiune unic care este foarte eficientă și pentru care nu s-a semnalat încă niciun risc de apariție a fenomenului de rezistență. Este omologat în România pentru combaterea făinării la vița-de-vie (Uncinula necator) și a făinării la cultura de castraveți (Sphaerotheca fuliginea).

Avantajele fungicidului Karathane™ Gold 350 EC:

  • Acționează atât preventiv (interval de 10 zile), cât și curativ sau eradicativ (interval de 5 zile);
  • Mod de acțiune unic, care elimină pericolul de apariție a rezistenței;
  • Acționează inclusiv la temperaturi extreme (4⁰C - 35⁰C), când alte produse sunt ineficiente;
  • Foarte competitiv din punctul de vedere al costului pe hectar;
  • Se poate utiliza și la cultura de castraveți din solar;
  • Compatibilitate bună pentru a se folosi în tank mix cu alte fungicide sau produse insecticide.

ANA MARIA PASCARIU, CATEGORY MARKETING MANAGER FUNGICIDES & INSECTICIDES ROMANIA & REPUBLICA MOLDOVA CORTEVA AGRISCIENCE

Publicat în Protecția plantelor

newsletter rf

Publicitate

AGROMALIM 250x250px

21C0027COMINB CaseIH Puma 185 240 StageV AD A4 FIN ro web 300x200

03 300px Andermat Mix 2

T7 S 300x250 PX

Corteva

GAL Danubius Ialomita Braila

GAL Napris

Revista