Grupul Syngenta transmite că va oferi drepturi pentru anumite tehnologii de editare a genomului și de ameliorare pentru cercetarea academică la nivel global, ca parte a angajamentului său de a încuraja inovația și de a susține sustenabilitatea în agricultură. Aceste drepturi sunt accesibile prin intermediul platformei sale de colaborare în inovare, Shoots by Syngenta.
Anumite drepturi de Proprietate Intelectuală sunt legate de CRISPR-Cas12a optimizat, precum și de instrumente de ameliorare realizate prin editare genetică. Prin editarea genetică CRISPR este posibilă obținerea unei plante cu caracteristici îmbunătățite, care nu include material genetic de la o altă specie - mai rapid și mai eficient decât este posibil în mod natural sau prin metode tradiționale de ameliorare. „Puterea tehnologiei CRISPR are un potențial incredibil în a facilita inovația culturilor pentru a aduce valoare fermierilor. Creșterea utilizării tehnologiei CRISPR în agricultură poate transforma modul în care abordăm ameliorarea plantelor, accelerând descoperirea și lansarea inovațiilor care să ofere fermierilor culturi mai productive și mai rezistente. Invităm universitățile și instituțiile academice din întreaga lume să ne ajute să stimulăm inovația pentru a îmbunătăți sustenabilitatea agriculturii”, arată Gusui Wu, director global cercetare semințe la Syngenta.
În acest val al inovației tehnologice, cercetătorii de la Syngenta au inovat continuu pentru a îmbunătăți tehnologiile de editare a genomului CRISPR-Cas. Oamenii de știință de la Syngenta au modificat CRISPR-Cas12a pentru a-i crește atât eficiența, cât și utilitatea, optimizându-l semnificativ ca instrument pentru îmbunătățirea culturilor.
„Syngenta a fost dintotdeauna deschisă la partajarea tehnologiei cu entități publice și private, facilitând accesul simplu, rapid și ușor la tehnologiile sale proprietare pentru utilizarea în cercetarea academică și cu scop non-profit. Un exemplu îl constituie platforma de licențiere a legumelor Syngenta, care permite companiilor de ameliorare și institutelor academice să acceseze și să amelioreze folosind germoplasmă Syngenta”, transmite Syngenta România.
Platforma globală de colaborare în inovare Shoots by Syngenta a fost creată în 2023 cu scopul de a crea parteneriate menite să găsească soluții pentru unele dintre cele mai complexe provocări din domeniul producției alimentare și agriculturii. Platforma aduce împreună partenerii ecosistemului de inovare - format din academicieni, institute de cercetare și alte entități, alături de rețeaua globală de cercetare-dezvoltare a Syngenta, care este formată din peste 6.000 de oameni de știință. Scopul este de a dezvolta soluții menite să atenueze schimbările climatice, să îmbunătățească biodiversitatea și să servească mai bine fermierii mici și mari. Platforma a fost creată și se bazează pe valorile deschiderii și transparenței.
„La Syngenta, credem cu adevărat că orice colaborare accelerează inovația. Această nouă inițiativă are un potențial imens, nu doar de a rezulta în inovații tehnologice interesante, ci și de a conduce către soluții importante pentru culturi, care vor sprijini fermierii din întreaga lume”, precizează Stuart Harrison, directorul responsabil de parteneriate globale pe cercetare-dezvoltare a semințelor.
Adrian Percy, director executiv al Inițiativei Științelor Plantelor din Carolina de Nord, afirmă că: „Prin accesarea acestor tehnologii inovatoare de la Syngenta, Inițiativa Științelor Plantelor din Carolina de Nord și Universitatea de Stat din Carolina de Nord pot accelera și pune în valoare capacitățile lor în domeniul editării genomului. Suntem entuziasmați de aplicarea acestor tehnologii în programele noastre de cercetare, deoarece cu siguranță acestea vor permite îmbunătățirea caracteristicilor mai multor culturi, în beneficiul fermierilor”.
Astfel, a fost stabilit un proces simplu și eficient pentru licențierea tehnologiilor. Informații suplimentare despre tehnologiile disponibile pot fi accesate prin intermediul catalogului online de pe site-ul Shoots by Syngenta: https://shootsbysyngenta.com/outlicensing.
Abonamente Revista Fermierului – ediția print, AICI!
Fermierii ar trebui să aibă acces la inovații revoluționare, precum Noile Tehnici Genomice (NGTs), pentru a face față și a avea culturi mai rezistente și mai adaptabile în fața consecințelor severe ale schimbărilor climatice. Aceasta este una dintre concluziile de la Congresul European de Horticultură (Europe Horticulture Congress - EHC 2024) care se desfăşoară la Palatul Parlamentului din București, în perioada 12-16 mai 2024.
În fața a peste o mie de participanți din țările europene, Maria Cîrjă, Marketing Manager pentru România și Republica Moldova la Corteva Agriscience, a prezentat una dintre cele mai importante soluții pentru o agricultură durabilă: „Prin inovația avansată, cu capacitatea de a aborda provocări de la schimbările climatice la nutriție, promisiunea NGTs pentru agricultură este vastă. Tehnologiile precum CRISPR-Cas sunt esențiale în ajutorul adaptării și diminuării schimbărilor climatice, precum și a tranziției continue către practici mai durabile în agricultură, cu mai puține inputuri. Corteva Agriscience se aliniază considerațiilor conform cărora NGTs ar putea reprezenta o resursă suplimentară pentru fermieri pentru a se adapta la scenariile climatice în schimbare, consolidând în același timp securitatea alimentară atât pentru producători, cât și pentru consumatori”.
La Congresul European de Horticultură, în fața unei audiențe formate din oameni de știință, profesori și ingineri din domeniul academic și din industrie, reprezentantul Corteva a subliniat importanța NGTs pentru o înțelegere profundă a funcționării genelor în cadrul speciilor de plante, permițând dezvoltarea sau îmbunătățirea trăsăturilor plantelor prin editări precise sau personalizarea funcțiilor multiple ale genelor. Spre deosebire de Organismele Modificate Genetic (GMOs), NGTs operează exclusiv în materialul genetic al plantei, fără a include „gene străine”. Această variabilitate inerentă provine din ADN-ul propriu al speciei de plante, deosebindu-se de tehnologiile tradiționale transgenice.
Ca exemplu al gamei largi de aplicații potențiale ale NGTs, Maria Cîrjă a prezentat rezultatele profesorului Ezura Hiroshi, PhD, de la Universitatea Tsukuba din Japonia, care au condus la crearea roșiei HIGH GABA. Profesorul Hiroshi și-a dedicat eforturile aplicării NGTs în îmbunătățirea culturilor horticole precum pepenii și roșiile și a dezvoltat cu succes o roșie CRISPR cunoscută sub numele de roșie HIGH GABA, care prezintă o creștere semnificativă a conținutului de acid gamma-aminobutiric (GABA) în comparație cu roșiile obișnuite. GABA, o moleculă sintetizată în mod natural în toate organismele vii, este recunoscută pentru capacitatea sa de a scădea tensiunea arterială ridicată la oameni, iar creșterea prezenței sale în roșii are implicații semnificative pentru sănătatea publică, putând îmbunătăți sănătatea inimii.
Maria Cârjă a explicat că, în viitor, NGTs prezintă promisiuni imense în diverse aspecte ale agriculturii: „Aceste inovații oferă potențialul de a crește productivitatea culturilor fără a necesita extinderea terenurilor agricole, generând astfel beneficii semnificative climei, mediului și societății. În ciuda utilizării relativ stabile a terenurilor agricole în Europa între 2005 și 2020, în ciuda creșterii populației, NGTs pot contribui la satisfacerea cererii tot mai mari de alimente în mod sustenabil. Mai mult, NGTs ar putea oferi o soluție durabilă pentru abordarea problemei presante a secetei care a afectat sectorul agricol al României în ultimii ani. Adoptarea NGTs ar permite fermierilor români să își sporească productivitatea în mod constant prin culturi cu o rezistență sporită la boli și secetă”.
Corteva se aliniază la ideea că facilitarea inovării pentru agricultori necesită reglementări clare, pragmatice și armonizate la nivel mondial pentru a sprijini implementarea cercetării și dezvoltării de NGTs ca instrument de ameliorare, asigurând inovarea și menținând în același timp coerența reglementărilor. Uniunea Europeană poate debloca potențialul transformator al NGTs, favorizând un sistem agroalimentar mai rezistent și mai durabil, în beneficiul fermierilor și al consumatorilor deopotrivă. „Combinația dintre noile tehnici de ameliorare a plantelor, împreună cu tehnologiile emergente, cum ar fi imagistica și știința datelor, oferă un set de instrumente puternice pentru producția continuă de alimente sănătoase într-o lume în schimbare”, a conchis Maria Cîrjă.
Abonamente Revista Fermierului – ediția print, AICI!
Principalele boli care afectează puternic culturile de cereale păioase își fac apariția chiar din primăvară, cum ar fi făinarea, pătarea în ochi, septorioza, iar dacă factorii de mediu sunt favoribili și restul bolilor pot apărea mai devreme.
Verben™ este un fungicid unic și puternic, special creat și lansat de Corteva Agriscience pentru a asigura protecția cerealelor încă de la primul tratament din primăvară.
Protecția cerealelor începe din T1
Prin utilizarea lui Verben™ în primul tratament T1, beneficiem de puterea curativă și preventivă a celor două substanțe active conținute. Având o plantă curată chiar din T1, putem optimiza schema tehnologică, fară a face rabat de la producție, deorece planta va fi curată înca din primavară și va fi mai rezistentă în fața următoarelor valuri de infecție.
O singură lovitură tuturor bolilor importante
Fungicidul Verben™ este compus din două dintre cele mai bune substanțe active întâlnite la ora actuală (proquinazid și protioconazol). Aceste două substanțe active au un efect sinergic, fiind puse în valoare și cu ajutorul formulării speciale create de Corteva, pentru a oferi maximul de putere chiar și la temperaturi scăzute, aderență, distribuție uniformă a substanțelor active și rezistență la spălare la o oră de la aplicare. Prin folosirea lui Verben™ în T1 nu mai este nevoie să adăugam în pompă un alt fungicid, eliminând astfel riscul de fitotoxicitate, poluare și incompatibilitate. În testele efectuate de Corteva, Verben™ a dovedit că poate fi amestecat fără a avea probleme de compatibilitate cu majoritatea produselor fitosanitare, fie ele regulatori de creștere, erbicide, fungicide sau insecticide, frecvent utilizate în T1.
Cel mai bun în controlul făinării
Verben™ combate bolile specifice, inclusiv făinarea, chiar și la temperaturi reduse. Testele efectuate de către Corteva au evidențiat faptul că, pe lângă absorbția rapidă în plantă chiar și la temperaturi sub 10 °C, Verben™ combate făinarea și septorioza foarte bine și rămâne activ datorită sinergiei celor două substanțe, chiar și la câteva săptamâni după aplicare.
Datorită mobilității sale în plantă chiar și la temperaturi scăzute, Verben™ acționează înainte ca simptomele să fie vizibile asupra hifelor miceliene care sunt deja prezente în planta de cultură. Verben™ protejează cerealele păioase prin modul său de acțiune, atât curativ, cât și preventiv. Prin formularea și sinergia celor două substanțe active, Verben™ deține controlul bolilor la toate culturile de cereale păioase și în special al făinării.
O soluție antirezistență
Datorită celor două substanțe active, Verben™ este considerat o soluție viabilă într-un viitor în care clasa azolilor va fi dominantă și riscul de rezistență va fi unul foarte ridicat. Prin utilizarea lui Verben™ acest risc este minimizat deoarece ambele substanțe active din acest fungicid fac parte din două clase chimice diferite, ce au moduri de acțiune diferite, care vor impiedica crearea rezistenței bolilor.
Dozarea și utilizarea
La grâu și triticale, fungicidul Verben™ se poate aplica de la stadiul de înfrățire până la înflorit (50% spice înflorite) BBCH 25-65, în doză de 0,6-1l/ha, doza medie recomandată fiind de 0,75l/ha.
La secară și orz, Verben™ se poate aplica din stadiul de înfrățire până în faza de burduf, BBCH 25-49, în doză de 0,6-1l/ha, doza medie recomandată fiind de 0,75l/ha.
Spectrul de combatere al lui Verben™ este foarte mare cuprinzând boli precum: Erysiphe graminis- Făinarea, Septoria tritici – Septorioza, Septoria nodorum- Septorioza spicelor, Pseudocercosporella herpotrichoides – Pătarea în ochi, Puccinia striiformis– Rugina galbenă, Puccinia recondita- Rugina brună , Pyrenophora teres- Sfâșierea frunzelor, Ramularia collo-cygni-Ramularia, Rhynchosporium secalis- Arsura frunzelor.
Prin utilizarea lui Verben™ încă de la primul tratament din primăvară, planta este protejată de bolile specifice cerealelor, fortificată și pusă în valoare, pentru a oferi producțiile cele mai mari și mai calitative.
Articol de: ADRIAN IONESCU, Category Marketing Manager Insecticide, Fungicide & Biologice Corteva Agriscience RO & MD
VIDEO Verben - Prezentare: https://www.youtube.com/watch?v=bXvGjUvz2gI&list=PLJH446RiTipbWoiPZE35ppQeR4TJIluMo&index=144
VIDEO Verben - Beneficii: https://www.youtube.com/watch?v=ziL74Oykr5g&list=PLJH446RiTipbWoiPZE35ppQeR4TJIluMo&index=143
VIDEO Eficacitatea fungicidului Verben: https://www.youtube.com/watch?v=ekR3czGVjGk&list=PLJH446RiTipbWoiPZE35ppQeR4TJIluMo&index=145
VIDEO Verben - Mod de acțiune: https://www.youtube.com/watch?v=KnbRmHwPFEo&list=PLJH446RiTipbWoiPZE35ppQeR4TJIluMo&index=150
VIDEO Verben - Rezistența la ploaie: https://www.youtube.com/watch?v=tAHRclSaX3U&list=PLJH446RiTipbWoiPZE35ppQeR4TJIluMo&index=131
Abonamente Revista Fermierului – ediția print, AICI!
În această perioadă am analizat în laborator probe de floarea-soarelui din partea de sud a țării noastre. În zona de proveniență a probelor, floarea-soarelui de pe mii de hectare a căzut la sol din cauza atacului fungului Macrophomina phaseolina. Pagubele au fost foarte mari.
Atrag atenția că acest patogen, Macrophomina phaseolina, este foarte periculos mai ales atunci când condițiile climatice sunt favorabile infecțiilor, iar hibridul este sensibil.
Pe fondul climatic favorabil (temperaturile ridicate sunt preferate de patogen) și al sistemelor agricole bazate pe monocultură, apreciez că, în următorii ani, acest fung va produce pagube importante în culturile de floarea-soarelui și nu numai, având în vedere că este polifag.
Recomand fermierilor să aleagă hibrizi de floarea-soarelui rezistenți la infecțiile cu Macrophomina phaseolina.
Un studiu efectuat în acest an, împreună cu compania Bayer, a scos în evidență că hibrizii toleranți au avut o producție mulțumitoare, comparativ cu cei sensibili unde producția a fost foarte scăzută.
Măduvă consumată de patogen. Aspect de farfurii etajate
Macrophomina phaseolina este un nou patogen pentru România sau este doar necunoscut de fermieri?
Răspunsul este nu. Nu este un patogen nou pentru România. Macrophomina phaseolina (Tassi) Goid sau putrezirea cărbunoasă a rădăcinilor și tulpinilor de floarea-soarelui este un patogen care poate compromite producția de floarea-soarelui. Informațiile din materialul de față pot ajuta fermierii să prevină pierderile pe care acest patogen periculos le poate produce la floarea-soarelui, mai ales la hibrizii sensibili.
Fungul a fost raportat în multe țări, cum ar fi: Ungaria, România, Spania, Serbia, Italia, Bulgaria, Portugalia, Rusia, SUA, Cehia, Turcia, Slovacia [Csüllög et Tarcali, 2020]. Este adevărat că în România există puține studii cu privire la prezența patogenului în culturile de floarea-soarelui. În anul 1982, Comes et al. în cartea „Fitopatologie” nu descriu acest patogen la nicio plantă agricolă, deși în perioada 1981 - 1983 patogenul a creat probleme în multe țări din Europa [Tančić et al.,2012]. Mai târziu, Bontea (1985, 1986) descrie patogenul în cartea „Ciuperci parazite și saprofite din România”. În 1990, Docea et Severin descriu patogenul la trei plante agricole (porumb, floarea-soarelui, soia) în cartea „Ghid practic pentru recunoașterea și combaterea bolilor plantelor agricole”.
Pete argintii pe tulpina atacată. Se observă microscleroții de la suprafața epidermei
Un studiu interesant a fost publicat în anul 1996 de către Ioniță et al., cu privire la prezența acestui patogen în diferite culturi agricole din România (soia, floarea-soarelui, sfeclă, fasole, rapiță etc.). În cadrul acestui studiu, autorii au raportat frecvențe ridicate de atac ale fungului Macrophomina phaseolina la floarea-soarelui între anii 1992 și 1994, cuprinse între 46,5% și 92,7%. În anul 2021, patogenul a fost raportat în mai multe culturi de floarea-soarelui din vestul României unde a produs pagube majore, unele culturi fiind compromise în totalitate [Cotuna et Sărățeanu, 2021; Cotuna et al., 2022].
De ce este tot mai prezent fungul în culturile de floarea-soarelui din România?
Tendința de extindere a acestui patogen (specific zonelor calde) către zonele temperate a ieșit în evidență în ultimii ani, fiind raportate tot mai des pagube mari în culturile din aceste zone, unde patogenul nu se instala decât ocazional, în anii cu condiții climatice favorabile [Wrather et al. 1995; Manici et al., 2012]. Pe fondul creșterii temperaturilor și a lipsei apei din sol, patogenul Macrophomina phaseolina se extinde încet și sigur în zonele cu climat relativ răcoros. În zonele temperate, patogenul își face simțită prezența din ce în ce mai des, nu doar sporadic, cum se întâmpla mai demult.
Caracterul invaziv al patogenului M. phaseolina reiese din cele mai multe studii analizate. Pe lângă asta, numărul mare de plante-gazdă, distribuția la nivel global, schimbările climatice arată că fungul prezintă importanță deosebită pentru viitorul culturii de floarea-soarelui și nu numai [Cotuna et al., 2022].
Plante frânte. Hibrid sensibil
În România, pe fondul modificărilor climatice, al creșterii temperaturilor peste mediile multianuale, Macrophomina phaseolina și-ar putea face simțită prezența în culturile de floarea-soarelui în fiecare an. Asta nu ar fi bine deloc, deoarece patogenul este greu de ținut sub control. La condițiile de climă pot fi adăugate condițiile de sol, înrădăcinarea defectuoasă a plantelor, carențele de bor, știut fiind că patogenul se instalează cu ușurință pe plantele afectate de fiziopatii [Popescu, 2005].
Modificările climatice actuale (în special creșterea temperaturilor) ar putea influența pozitiv patosistemul Macrophomina phaseolina (Tassi) Goid. - Helianthus annus L. în zonele cu climat moderat. În astfel de zone, Macrophomina phaseolina produce infecții doar în anii în care se înregistrează temperaturi ridicate și uscăciune. Astfel de situații au fost raportate în anii 1981 - 1983 în aproape toate țările europene, mai puțin Polonia [Tančić et al.,2012]. Coakley et al. (1999) susțin că modificările climatice pot avea impact direct asupra patogenilor din cultura de floarea-soarelui, susținând infecțiile. Vremea caldă și secetoasă stimulează patogenul Macrophomina phaseolina. După Sarova et al. (2003), condițiile de vreme caldă și uscată (temperaturi cuprinse între 28 și 300C și lipsa apei din sol) favorizează instalarea fungului.
Simptome produse de Macrophomina phaseolina la baza plantei de floarea-soarelui
În general, fungii care rezistă în sol sub formă de scleroți perioade lungi ar putea tolera mult mai ușor condițiile climatice nefavorabile (seceta, de exemplu). Lipsa apei din sol ar putea predispune plantele de floarea-soarelui la atacul agenților patogeni sistemici care distrug și blochează vasele [Vear, 2016; Debaeke et al., 2017].
Recunoașterea simptomelor
Fungul M. phaseolina infectează plantele de floarea-soarelui în primele stadii de dezvoltare, dar simptomele nu apar decât spre sfârșitul perioadei de înflorire [Meyer et al., 1974; Docea et Severin, 1990]. Discutăm despre o infecție latentă, în cazul acestui fung. Studiile arată că, de cele mai multe ori, plantele care aparent prezintă o bună dezvoltare în primele stadii vor prezenta simptome severe la maturitate. Plantele infectate se vor matura timpuriu, vor avea calatidii mai mici, uneori deformate și un număr redus de achene. În zona centrală a calatidiului multe flori sunt avortate [EPPO, 2000].
Fungul pătrunde inițial în rădăcinile secundare și terțiare, după care ajunge în rădăcina primară. În urma infecției, în sistemul fibrovascular al rădăcinilor și internodurilor bazale transportul nutrienților și al apei va fi blocat de fung. Plantele cu rădăcini bolnave pot fi smulse cu ușurință din sol, iar uneori pier. La suprafața rădăcinilor bolnave, dar și în interior, se formează microscleroți de culoare neagră [Ahmad et Burney, 1990; Docea et Severin, 1990].
Simptome la baza plantelor (august 2023)
Primele simptome apar spre sfârșitul stadiului de înflorire al florii-soarelui, fiind vizibile pe tulpini și rădăcini. Tulpinile prezintă simptome în zona bazală sau în treimea inferioară [Docea et Severin, 1990; Popescu, 2005]. La suprafața tulpinilor atacate apare o decolorare cenușie cu reflexe argintii uneori, tipică acestui agent patogen. În țesuturile infectate fungul va forma numeroși microscleroți de culoare neagră, ce dau aspect cenușiu - negricios, asemănat de unii autori cu o pulbere fină de cărbune. Măduva din partea inferioară a tulpinilor capătă aspect negricios datorită microscleroților [Yang et Owen, 1982; Kolte, 1985; Khan, 2007]. În zona infectată, fungul poate distruge măduva în totalitate. Uneori se observă că măduva nu este distrusă în totalitate, dar este desfăcută în discuri cu aspect de „farfurii etajate” [Docea et Severin, 1990; Popescu, 2005]. De asemenea, epiderma bolnavă se desprinde cu ușurință de tulpină. Sub epiderma infectată, cât și la suprafață se observă cu ușurință microscleroții negri care se formează din abundență. Microscleroții dau aspect negru-cenușiu, cărbunos țesuturilor atacate [Sinclair, 1982; Kolte, 1985]. În cazurile grave, Csüllög et al. (2020) arată că tulpinile bolnave au aspect carbonizat. Pe lângă microscleroți, ciuperca poate forma picnidii pe tulpini, dar asta se întâmplă mai rar în condiții naturale.
Plante uscate . Se observă calatidiile foarte mici
Plantele bolnave se pot ofili începând de la înflorit până la maturitatea plantelor. Cu cât frecvența plantelor atacate este mai ridicată, iar hibrizii sensibili, pierderile de producție pot fi foarte mari (Prioletta et Bazzalo, 1998).
Supraviețuirea fungului și condițiile climatice în care se realizează infecțiile
Macrophomina phaseolina rezistă în sol sub formă de microscleroți, pe resturile vegetale, dar și în masa de semințe [EPPO, 2000; Csüllög et al., 2020; Popescu, 2005; Docea et Severin, 1990]. Microscleroții pot supraviețui în sol de la doi până la 15 ani [Baird et al., 2003; Gupta et al., 2012; Csüllög et al., 2020].
Infecțiile sunt influențate în principal de temperatură, mai ales de temperaturile solului de peste 28 0C și de precipitații [EPPO, 2000]. De aceea, plantele de floarea-soarelui pot fi atacate de Macrophomina phaseolina în perioadele secetoase și cu temperaturi ridicate (preferate). Temperatura, umiditatea atmosferică și cea disponibilă sunt foarte importante în realizarea infecțiilor cu Macrophomina phaseolina. După Marquez et al. (2021), microscleroții germinează la temperaturi cuprinse între 30 - 35 0C.
Sute de microscleroți negricioși în epiderma tulpinilor bolnave
Când plantele sunt tinere (primele stadii de dezvoltare), fungul le poate infecta în 24 - 48 ore în condiții de temperatură scăzută și umiditate ridicată. Chiar dacă sunt infectate, la tinerele plăntuțe simptomele nu sunt vizibile. Fungul evoluează lent în plantele atacate până la formarea achenelor. Manifestarea bolii la exterior sau apariția simptomelor tipice are loc în perioada de formare a semințelor, când umiditatea este scăzută și temperatura ridicată [Ahmed, 1996; Khan, 2007].
Scenariile climatice realizate în Europa arată că, creșterea temperaturilor în zonele cu climat temperat, însoțită de lipsa precipitațiilor ar putea crea probleme deosebite în culturile de floarea-soarelui, făcându-le vulnerabile la atacul patogenului M. phaseolina [Debaeke et al., 2017]. Acesta reușește să supraviețuiască în condițiile menționate datorită microscleroților pe care îi formează în țesuturile gazdei (rădăcini și tulpini) [Cook et al., 1973; Short et al., 1980].
Plante uscate cu calatidiu foarte mic - august 2023, Timiș
Alți factori care predispun plantele la infecție
Densitatea ridicată, rănile mecanice, atacul insectelor sunt factori care favorizează instalarea patogenului [Shiekh et Ghaffar, 1984; Ahmed et al., 1991]. Popescu (2005) arată că fungul infectează în general plantele cu afecțiuni fiziopatice, la care creșterea rădăcinii principale este stopată iar rădăcinile secundare încep să îmbătrânească. La aceste plante, sistemul radicular va fi ocupat de Fusarium sp., dar și de alte ciuperci care pregătesc astfel țesuturile radiculare pentru infecția cu Macrophomina phaseolina. Aproape întotdeauna, pe rădăcinile atacate de fung se observă micelii albe - rozii specifice fungului Fusarium sp.
Managementul integrat al patogenului M. phaseolina
Managementul integrat constă într-o sumă de măsuri de combatere ce pot fi utilizate echilibrat pentru a proteja mediul, entomofauna utilă, sănătatea oamenilor și animalelor.
În managementul putrezirii cărbunoase a florii-soarelui este esențială utilizarea unei strategii de combatere care să includă măsurile de prevenție, măsurile biologice și mai puțin măsurile chimice (ineficiente de cele mai multe ori). Doar așa pot fi evitate pierderile pe care patogenul este capabil să le producă, cât și impactul pesticidelor asupra mediului (în cazul utilizării excesive) - Vimal et al., 2017.
Plante frânte din cauza bolii
Abordarea metodelor profilactice și biologice este esențială în prezent. Noile cercetări cu privire la agenții biologici de control sunt încurajatoare, deși sunt necesare mai multe teste în condiții naturale de câmp.
Metode profilactice
Cele mai importante în combaterea acestui fung extrem de periculos și greu de combătut sunt măsurile de prevenție sau profilactice [Hafeez și Ahmad, 1997]. Aceste măsuri sunt: alegerea unui hibrid rezistent sau tolerant la boală, irigarea culturilor în condiții de secetă și temperaturi ridicate, distrugerea resturilor vegetale infectate (sunt pline de microscleroți), înființarea culturilor în soluri cu textură corespunzătoare, respectarea rotației culturilor. Cu privire la rotație, nu întotdeauna rezultatele sunt cele scontate din cauza polifagiei ciupercii, care are capacitatea de a infecta peste 300 de plante cultivate și buruieni [Francl et al., 1988; EPPO, 2000; Popescu, 2005]. Pe lângă măsurile amintite, se recomandă utilizarea la semănat de sămânță liberă de microscleroți, lucrări ale solului de calitate superioară, igiena culturală [Docea et Severin, 1990].
Metode chimice
Deoarece controlul chimic al acestui fung este foarte dificil (lipsa fungicidelor care să combată patogenul la nivelul sistemului radicular), numeroase studii se fac pe această temă [Chamorro et al., 2015a; Lokesh et al., 2020; Marquez et al., 2021]. Experimentele realizate în laborator de către Csüllög et Tarcali (2020) arată că nu există fungicide eficiente împotriva acestui fung. În cadrul studiului au fost testate câteva fungicide: azoxystrobin, ciproconazol, procloraz și piraclostrobin (unele au fost retrase între timp). Dintre ele, doar proclorazul a oprit creșterea hifelor și a microscleroților. Concluzia studiului a fost că doar rezistența genetică ar putea da rezultate în combatere.
În solurile infectate se pot face fumigări cu substanțe aprobate. Această metodă este destul de costisitoare și poluantă, fiind utilizată pe scară redusă [Lokesh et al., 2020].
După recoltat. Calatidiile plantelor bolnave se observă că au rămas la sol. La hibrizii sensibili producția a fost diminuată cu peste 50%
Metode nonpoluante
Biofumigația ar putea fi o alternativă pentru gestionarea patogenului M. phaseolina la floarea-soarelui. Biofumigația constă în cultivarea și încorporarea unei Brassicaceae (cultură de acoperire) în sol pentru a produce substanțe biocide. Studii foarte recente arată efectele biocide ale izotiocianaților (isothiocyanates) asupra fungilor patogeni din sol [Ait-Kaci et al., 2020]. Eficacitatea biofumigării este oscilantă fiind influențată de mulți factori arată Motisi et al. (2010). Același autor aduce în atenție creșteri ale intensității de atac ale unor patogeni după biofumigație. De aceea sunt necesare studii mai numeroase care să ateste că biofumigarea este eficientă în controlul patogenilor din culturile de floarea-soarelui și să evidențieze posibilele dezavantaje ale acestei metode [Ait-Kaci et al., 2020].
O altă metodă nonpoluantă ce poate fi utilizată este solarizarea terenului infectat. Greu de aplicat și această metodă pe suprafețe mari. Pe lângă asta, terenul nu poate fi cultivat pe perioada solarizării.
Metode biologice
În sistemele de combatere integrată a patogenilor din cultura de floarea-soarelui, agenții biologici (fungi, bacterii, virusuri) pot înlocui unele tratamente chimice. În acest sens se fac multe testări în laborator cu privire la eficacitatea în combatere a unor antagoniști (fungi și bacterii), dar și a micorizelor. Se cunoaște de mult timp că micorizele arbusculare au efecte benefice asupra plantelor, favorizând absorbția nutrienților și protejând plantele de atacul unor patogeni și dăunători [Karthikeyan et al., 2016; Marquez et al., 2019; Cotuna et al., 2013]. În cazul florii-soarelui s-a constatat că simbioza cu micorizele arbusculare nu poate opri infecția cu M. phaseolina [Spagnoletti et al., 2017; 2020].
Fungii antagoniști Trichoderma viride și Trichoderma harzianum s-au dovedit a fi eficienți pentru controlul fungului M. phaseolina [Alice et al., 1996]. În general, ciupercile din genul Trichoderma s-au dovedit agenți biologici de control eficienți [Hyder et al., 2017]. Dintre speciile de Trichoderma, T. longibrachiatum, prin inhibarea directă dar și cu ajutorul compușilor organici volatili microbieni (antibioză), a redus creșterile miceliene ale patogenului M. phaseolina, prin modificarea structurii acestora [Sridharan et al.,2020]. Eficacitate foarte bună s-a înregistrat în cazul combinațiilor dintre fungul Trichoderma harzianum și bacteria Pseudomonas fluorescens, care au redus germinația scleroților ciupercii în condiții naturale în procent de 60% [Sristava et al., 1996].
Secțiune în rădăcină. Se observă microscleroții în țesutul lignificat
Agenții biologici bacterieni din zona rizosferei sunt tot mai mult testați pentru combaterea biologică a fungului M. phaseolina. Unele rizobacterii și-au dovedit capacitatea de a inhiba creșterea acestui fung. Astfel, Bacillus amyloliquefaciens și Bacillus siamensis au demonstrat efect fungistatic foarte bun asupra scleroților fungului [Torres et al., 2016; Hussain et Khan, 2020]. După Simonetti et al. (2015), rizobacteriile Pseudomonas fluorescens și Bacillus subtilis pot inhiba M. phaseolina conform testelor efectuate in vitro și in vivo. Un studiu recent arată că B. contaminans ar opri dezvoltarea fungului M. phaseolina prin reducerea patogenității [Zaman et al., 2020].
Despre patogenul Macrophomina phaseolina am mai scris și în anul 2021, găsiți toate detaliile aici.
BibliografieAit-Kaci, Ahmed, N., Dechamp-Guillaume, G, Seassau, C., 2020, Biofumigation to protect oilseed crops: focus on management of soilborne fungi of sunflower. OCL 27: 59.Ahmad, I., Burney, K., 1990, Macrophomina phaseolina infection and charcoal rot development in sunflower and field conditions. 3rd International Conference Plant Protection in tropics. March 20 - 23, Grantings, Islands Paeau, Malaysia.Ahmad, I., Burney, K., Asad, S., 1991, Current status of sunflower diseases in Pakistan. National Symposium on Status of Plant Pathology in Pakistan. December 3 - 5, 1991, Karachi, P. 53.Ahmad, Y., 1996, Biology and control of corn stalk rot. Ph.D. Thesis, Department of Biological Science, Quaid-i-Azam University, Islamabad, Pakistan.Alice, D., E. G., Ebenezar, K., Siraprakasan, 1996, Biocontrol of Macrophomina phaseolina causing root rot of jasmine. J. Ecobiol., 8: 17 – 20.Baird, R., E., Watson, C., E., Scruggs, M., 2003, Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Dis. 87: 563 – 566.Bontea, V., 1985, Ciuperci parazite și saprofite din România, vol. I, Editura Acad. R. S. R., București, 590 p.Bontea, V., 1986, Ciuperci parazite și saprofite din România, vol. II, Editura Acad. R. S. R., București, 474 p.Chamorro, M., Domínguez, P., Medina, J., J., Miranda, L., Soria, C., Romero, F., et al., 2015a, Assessment of chemical and biosolarization treatments for the control of Macrophomina phaseolina in strawberries. Sci. Hortic. (Amsterdam) 192, 361 – 368.Coakley, S., M., Scherm, H., Chakraborty, S., 1999, Climate change and plant disease management. Annu Rev Phytopathol 37: 399 – 426.Cook, G., E., Boosalis, M., G., Dunkle, L., D., Odvody, G., N., 1973, Survival of Macrophomina phaseoli in corn and sorghum stalk residue. Plant Dis. Rep. 57: 873 – 875.Comes, I., Lazăr, A., Bobeș, I., Hatman, M., Drăcea, A., E., 1982, Fitopatologie, Editura Didactică și Pedagogică București, 455 pCotuna, O., Sărățeanu, V., Durău C., 2013, Influence of arbuscular mycorrhizae (AM) colonization on plant growth: Plantago lanceolata L., case study, Journal of Food, Agriculture & Environment, vol. 11 (3&4): 2005 – 2008.Cotuna, O., Sărățeanu, V., 2021, Putrezirea cărbunoasă a rădăcinilor și tulpinilor de floarea soarelui - Macrophomina phaseolina (Tassi) Goidanich cu forma microscleroțială Rhizoctonia bataticola (Taubenhaus) E. J. Butler, Agricultura Banatului nr. 3 (148), 77 - 82, Editura Agroprint, ISSN - L - 1483 - 1313; ISSN 2559 - 1614 (online).Cotuna, Otilia, Paraschivu, Mirela, Sărățeanu, Veronica, 2022, Charcoal rot of the sunflower roots and stems (Macrophomina phaseolina (Tassi) Goid.) - an overview, Scientific papers - Series management economic engineering in agriculture and rural development, volume 22, Issue 1, 2022, ISSN 2284-7995, eISSN 2285-3952, 107 - 116.Csüllög, K., Tarcali, G., 2020, Investigation of the mycelial compatibility of Macrophomina phaseolina. Folia Oecologica, 47 (2): 153 – 158.Csüllög, K., Tarcali G., 2020, Examination of different fungicides against Macrophomina phaseolina in laboratory conditions, Acta Agraria Debreceniensis 2020 - 2, 65 - 69.Csüllög, K., Racz, E., D., Tarcali, G., 2020, The Charcoal rot disease (Macrophomina phaseolina (Tassi) Goid.) in Hungary, Characterization of Macrophomina phaseolina fungus, National Seminar on Recent Advances in Fungal Diversity, Plant - Microbes Interaction and Disease Management At: Banaras Hindu University, Varanasi, India.Debaeke, P., Casadebaig, P., Flenet, F., Langlade, N., 2017, Sunflower crop and climate change: vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL, 2017, 24(1) D102.Docea, E., Severin, V., 1990, Ghid pentru recunoașterea și combaterea bolilor plantelor agricole, Editura Ceres, București, p. 137, 320 p.Francl, L., J., Wyllie, T., D., Rosenbrock, S., M., 1988, Influence of crop rotation on population density of Macrophomina phaseolina in soil infested with Heterodera glycines. Plant Dis. 72, 760 – 764.Gupta, G., K., Sharma, S., K., Ramteke, R., 2012, Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). J. Phytopathol. 160, 167 –180.Hafeez, A., Ahmad, S., 1997, Screening of sunflower germplasm for resistance to charcoal rot in Pakistan. Pak. J. of Phytopathology 9:74 - 76.Hussain, T., Khan, A., A., 2020, Determining the antifungal activity and characterization of Bacillus siamensis AMU03 against Macrophomina phaseolina (Tassi) Goid. Indian Phytopathol. 73, 507 – 516.Hyder, S., Inam-ul-haq, M., Bibi, S., Humayun, A., 2017, Novel potential of Trichoderma spp. as biocontrol agent. J. Entomol. Zool. Stud. 5, 214 – 222.Ioniță, A., Iliescu, H., Kupferberg., S., 1996. Macrophomina phaseolina – one of the main pathogens of sunflower crop in Romania. In Proceedings of the 14th international sunflower conference. Beijing, China, June 12–20, 1996. Shenyang: ISA, p. 718 – 723.Khan, S. N., 2007, Macrophomina phaseolina as causal agent for charcoal rot of sunflower, Mycopath (2007) 5 (2): 111 - 118.Karthikeyan, B., Abitha, B., Henry, A., J., Sa, T., Joe, M., M., 2016, “Interaction of Rhizobacteria with Arbuscular Mycorrhizal fungi (AMF) and their role in stress abetment in agriculture,” in Recent Advances on Mycorrhizal Fungi, ed. M. C. Pagano (Cham: Springer), 117–142.Kolte, S., J., 1985, Diseases of annual edible oilseed crops. Vol. II. Boca Raton, Florida: CRC Press, p. 33 – 44.Lokesh, R., Rakholiya, K., B., Thesiya, M., R., 2020, Evaluation of different fungicides against Macrophomina phaseolina (Tassi) goid. causing dry root rot of chickpea (Cicer arietinum L.) in vitro. Artic. Int. J. Curr. Microbiol. Appl. Sci. 9, 1 – 11.Manici, L., M., Donatelli, M., Fumagalli, D., Lazzari, A., Bregaglio, S., 2012, Potential response of soil-borne fungal pathogens affecting crops to scenarios of climate change in Europe, International Environmental Modelling and Software Society (iEMSs),2012 International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany R. Seppelt, A.A. Voinov, S. Lange, D. Bankamp (Eds.) disponibil pe http://www.iemss.org/soc.../index.php/iemss-2012-proceedings, 9 p.Marquez, N., Giachero, M., L., Declerck, S., Ducasse, D., A., 2021, Macrophomina phaseolina: General Characteristics of Pathogenicity and Methods of Control. Front. Plant Sci. 12:634397.Motisi, N., Doré, T., Lucas, P., Montfort, F., 2010, Dealing with the variability in biofumigation efficacy through an epidemiological framework. Soil Biol Biochem 42, 2044 – 2057.Popescu, G., 2005, Tratat de patologia plantelor, vol II, Agricultură, Editura Eurobit, p. 143, 341 p.Prioletta, S., Bazallo, M., E., 1998, Sunflower basal stalk rot (Sclerotium bataticola): Its relationship with some yield component reduction. Hellia 21: 33 - 44.Sarova, J., Kudlikova, I., Zalud, Z, Veverka, K., 2003, Macrophomina phaseolina (Tassi) Goid moving north temperature adaptation or change in climate? J Plant Dis Prot 110: 444 – 448.Simonetti, E., Viso, N. P., Montecchia, M., Zilli, C., Balestrasse, K., Carmona, M., 2015, Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean. Microbiol. Res. 180, 40–48.Sinclair, J. B., 1982, Compendium of Soybean disease. 2nd Ed. by American Phytopathology Society, St. Paul, Minnesota, USA.Shiekh, A., H., Ghaffar, A., 1984, Reduction in variety of sclerotia of Macrophomina phaseolina with polyethylene mulching of soil. Soil Biology and Biochemistry 16: 77 - 79.Short, G. E., Wyllie, T. D., Bristow, P. R., 1980, Survival of Macrophomina phaseolina in soil and residue of soybean. Phytopathology 70: 13 – 17.Spagnoletti, F., Carmona, M., Gómez, N. E. T., Chiocchio, V., Lavado, R. S., 2017, Arbuscular mycorrhiza reduces the negative effects of Macrophomina phaseolina on soybean plants in arsenic-contaminated soils. Appl. Soil Ecol. 121, 41 –47.Spagnoletti, F. N., Cornero, M., Chiocchio, V., Lavado, R. S., Roberts, I. N., 2020, Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. Eur. J. Plant Pathol. 156, 839 – 849.Srivastava, A. K., Arora, D. K., Gupta, S., Pandey, R. R., Lee, M., 1996, Diversity of potential microbial parasites colonizing sclerotia of Macrophomina phaseolina in soil. Biol. Fertil. Soils. 22: 136 - 140.Tančić, Sonja, Boško, Dedić, Aleksandra, Dimitrijević, Sreten, Terzić, Siniša, Jocić, 2012, Bio-Ecological relations of sunflower pathogens – Macrophomina phaseolina and Fusarium spp. and sunflower tolerance to these pathogens, Romanian Agricultural Research, NO. 29, Print ISSN 1222-4227; Online ISSN 2067-5720, 349 - 359.Torres, M. J., Brandan, C. P., Petroselli, G., Erra-Balsells, R., Audisio, M. C., 2016, Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiol. Res. 182, 31–39.Vear, F., 2016, Changes in sunflower breeding over the last fifty years. OCL 23 (2): D202.Vimal, S. R., Singh, J. S., Arora, N. K., and Singh, S., 2017, Soil-Plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27, 177 – 192.Zaman, N. R., Kumar, B., Nasrin, Z., Islam, M. R., Maiti, T. K., Khan, H., 2020, Proteome analyses reveal Macrophomina phaseolina ’s survival tools when challenged by Burkholderia contaminans N Z. A C S Omega 5, 1352 – 1362.Yang, S. M., Owen D. F., 1982, Symptomology and detection of Macrophomina phaseolina in sunflower plants parasitized by Cylendrocopturus adspersus larvae. Phytopathology 72: 819 - 821.***EPPO Standard, European and Mediterranean Plant Protection Organization PP 2/21(1), 2000 - Guidelines on good plant protection practice - Sunflower, 9 p.
Articol scris de: dr. ing. OTILIA COTUNA, șef lucrări Facultatea de Agricultură USV „Regele Mihai I” Timișoara, Departamentul de Biologie și Protecția Plantelor
Foto: Otilia Cotuna
Abonamente Revista Fermierului – ediția print, AICI!
Universitatea de Științe Agricole și Medicină Veterinară (USAMV) Cluj-Napoca, prin Facultatea de Zootehnie și Biotehnologii, Disciplina de Apicultură și Sericicultură, face parte din consorțiul european al Proiectului Better-B, care are drept obiectiv principal restaurările, armonizările și echilibrările fiziologice ale coloniilor de albine. Consorțiul este format din 18 parteneri din 14 țări, iar coordonator este prof. dr. Dirk de Graaf, de la Universitatea Gent (Belgia), care a fost distins în 2021 cu titlul Doctor Honoris Causa al USAMV Cluj-Napoca.
Proiectul Better-B este finanțat cu 6,3 milioane euro din partea Uniunii Europene, a Regatului Unit și a Elveției, iar cercetările sunt dedicate îmbunătățirii tehnologiei apicole, rezistenței la stresul abiotic, la schimbările climatice, pierderea habitatului și la acțiunea substanțelor chimice periculoase.
Tema principală se referă la coloniile de albine, care sunt adesea slab adaptate pentru a face față stresului extern, cum ar fi schimbările climatice, pesticidele, provocarea și atacul paraziților, exacerbate de practicile apicole moderne. Specialiștii din cadrul proiectului subliniază faptul că reziliența apiculturii este susținută în primul rând de valorificarea puterii naturii, de restabilirea armoniei și echilibrului, atât la nivelul albinei ca individ, cât și la nivel de colonie sau între colonie și mediul ei.
„Consorțiul Better-B consideră calea către armonie și echilibru ca fiind reprezentată de coloniile darwiniene: colonii abandonate sau sălbatice, care au supraviețuit în mediul sălbatic sau au fost selectate pe criterii bazate pe potrivirea caracterelor de rezistență. Cu toate acestea, astfel de colonii lipsesc de obicei din efectivele de multiplicare și alte multe caracteristici favorabile, importante pentru apicultura modernă. Soluția noastră este să înțelegem procesele și mecanismele care sunt selectate în natură, pentru a putea adapta practicile moderne de apicultură tehnologiilor apicole avansate. Acesta este proiectul Better-B”, a explicat prof. dr. Daniel S. Dezmirean, decan al Facultății de Zootehnie și Biotehnologii și responsabil cu implementarea Proiectului Better-B din partea USAMV Cluj-Napoca.
Implementarea acestei noi abordări a managementului apicol va fi întreprinsă în strânsă colaborare cu apicultorii români, ca părți interesate. Specialiștii din cadrul proiectului consideră că armonia și echilibrul trebuie să aibă loc pe trei niveluri - mediul înconjurător, albinele melifere și practicile apicole, toate urmând a fi abordate în cadrul Proiectului Better-B, care va avea o durată de patru ani.
Abonamente Revista Fermierului – ediția print, AICI!
Succesul unei culturi începe cu sămânța. Ameliorarea plantelor și producția de sămânță reprezintă coloanele fundamentale ale agriculturii moderne. În această luptă constantă pentru a obține recolte de calitate, soiul de grâu autohton PG 102 a fost întâmpinat cu brațele deschise de către comunitatea agricolă, dezvăluind un potențial impresionant pentru agricultura viitorului.
În spatele fiecărui bob de grâu PG 102 se ascunde un efort meticulos de ameliorare genetică. PG 102 a fost modelat prin decenii de selecție și încrucișare, țintind să fie adaptat perfect la condițiile specifice ale României.
Menținerea calităților genetice la PG 102
Menținerea calităților genetice ale soiului PG 102 reprezintă un proces meticulos. Prima etapă a acestui proces implică selectarea plantelor tipice ale soiului, urmată de studiul atent al descendențelor acestor plante în câmpurile de menținere a valorii genetice și biologice a soiului, care durează între unul și trei ani. Scopul este de a obține sămânța amelioratorului, care apoi este înmulțită consecutiv pentru a produce semințe de prebază, bază și certificată.
În acest an, prima etapă a procesului de selecție conservativă pentru PG 102 a fost finalizată. S-au recoltat numeroase plante din câmpurile de prebază și bază ale companiei Prosol. Aceste plante au fost selectate cu atenție pe baza măsurătorilor biometrice și a altor caracteristici specifice ale soiului.
În toamnă, semințele selectate vor fi semănate individual în rânduri separate, pentru a urmări cu precizie dezvoltarea lor și pentru a asigura puritatea varietală maximă.
Acest proces se va derula în continuare timp de 1-3 ani, culminând cu obținerea sămânței amelioratorului. Acesta este un exemplu clar al angajamentului nostru de a oferi fermierilor sămânță de cea mai bună calitate, cu o valoare biologică cât mai apropiată de soiul inițial.
Ce îl face special?
Unul dintre aspectele deosebite care definește acest soi este rezistența sa la secetă. PG 102 este o adevărată comoară a agriculturii în zonele cu resurse de apă limitate. Datorită unui sistem radicular bine dezvoltat, PG 102 are capacitatea de a extrage apa din straturi adânci ale solului, oferind plantei o rezistență neegalată la secetă.
Dar, PG 102 nu se oprește aici. Acest soi impresionează și prin capacitatea sa mare de înfrățire, asigurând polenizarea optimă și uniformă a culturii. Ca rezultat, recoltele de grâu PG 102 sunt caracterizate de o consistență extraordinară, oferind fermierilor predictibilitate și prosperitate.
Un alt aspect semnificativ este rezistența sa la frângere și cădere, o proprietate vitală în fața provocărilor meteorologice. Această caracteristică asigură că plantele PG 102 rămân robuste și puternice în orice condiții, contribuind la o recoltă de calitate superioară.
Rezultate confirmate
Rezultatele din câmp demonstrează cu claritate potențialul uriaș al soiului PG 102. Fermierii au înregistrat producții medii de peste șapte tone pe hectar, cu cifre ale conținutului de gluten ce variază între 27 și 30,5%, precum și o masă hectolitrică de la 78,20 la 85 kg/hl. Aceste cifre confirmă calitatea și rezistența excepțională a soiului de grâu PG 102.
Articol de: MARIA OBADĂ (https://prosolagri.ro/)
Abonamente Revista Fermierului – ediția print, AICI!